F1 Power Steering Rack

WF1-Rack- (7)

Much like the shift in road car steering, F1 steering is now power assisted, with the hydraulic power steering rack now has been standard for many years.  Integrated as part of the cars high power hydraulic system, the rack is an essential part of the cars set up.  Without it the current suspension geometry at the upright would be impossible to steer without power assistance.  Like all F1 hydraulic solutions, the rack is a simple solution, made possible by finely engineered details.

Continue reading

How to Make a Battery an F1 Battery

F1 cars still carry batteries other than the ERS Energy Store, while the tech in the ERS is top secret and hi tech, there is lesser battery tech under the skin of the car.  Two other batteries are hidden away fulfilling critical roles, although their tech and installation is far from the cutting edge seen in the energy store.


12V battery


Despite a huge ERS battery sat in the car, there remains a conventional 12v battery to support the car’s systems when the motor isn’t running.  Even pre-ERS this battery was a Li-Ion cell type tucked away within the sidepod.  Typically, this is a motorsport specific Li-Ion type from a number of common suppliers (Varley, Braille), but this Marussia technical drawing shows how the unit is ‘dressed up’ to suit an F1 installation.  The basic battery has a carbon moulding bonded over it, with a Military-style multi-pin motorsport connector to join it to the car’s electrical system.  This carbon lid hides the permanent cabling connecting the battery terminals to the connector.


9V Battery


From your digital kitchen scales, toy remote controls and smoke alarms, the aged 9V cell with its clip on connectors is an unlikely F1 part, but every car carries one and is fundamental to the car and driver’s safety.  Unseen, the 9v Cell is part of the car’s fire extinguisher system, fitted in case the electrical system fails to provide the system with enough energy to set off the extinguisher.  The positive terminal connection and voltage of the humble 9v cell is ideal for this situation, so everyone can now say they have F1 technology in their house!

Flat Pack F1 Car: Assembly with Ikea Bolts


F1 rightly occupies a place at the top end of engineering and technology. But that is not to say that F1 cannot take inspiration from most unusual of places.  Many who follow this blog have inevitably been involved in the technically taxing assembly of flat pack furniture.  Unbeknown to us the clever fasteners used in straight and right angle butt joints are equally at use in F1 cars!


Barrel Nuts


Fastening thin bodywork or even larger structures like engines together on an F1 car is always a problem.  Stiffness and lightness are the key aim, but carbon structure of the car is an obstacle to both at times.  As these joints tend to work in tension, part-A wants to be bolted to part-B, tightened and then not fail when under load.  An obvious way to do this is to has a threaded bolt going into a threaded insert.  Placing a threaded insert into a F1 carbon structure is difficult, both as the insert invariably requires another metallic part to be bonded into the structure, then there needs to be enough structure to prevent the insert pulling out or the insert’s threads failing.


This problem is analogous to bolting crumbly chipboard sections together in your Ikea furniture, the point loads of a threaded fastener do not work in chipboard and the low cost aspect of flat pack furniture deters the addition of stiffening threaded inserts into the otherwise cheap chipboard matrix.  So we see joints made up of fasteners going into larger diameter barrel nuts.  The barrel nut provides the stiff threaded structure but its large size means it spreads its loads effectively into the chipboard, reducing the point load in the chipboard itself.  While a fastening solution good for tension, but not good for torsion, we also see these flat pack fortunate joints aided by wooden dowels to prevent the structure twisting and pulling the barrel but fastener in ways that might break the chipboard.


Just the same approach is used in F1, the strong tensile joint of a bolt into a barrel nut perfectly suits the issue with carbon fibre.  Now a large diameter hole is needed in the carbon, no metallic insert is required, just the replaceable barrel nut.  So we can see the engine is bolted into the back of the Monocoque with just such a flat pack solution, thin sections of bodywork such as the rear wing endplate mounting are joined with barrel nuts, creating the stiff aero assembly without the need to compromise the thinness of the parts for a stronger bolted up assembly


Cam lock fasteners


Another flat pack feature that translates to F1 cars is the way the nose bolts to the chassis.  We often see damaged noses replaced in seconds at a pit stop with the mechanic quarter turning a fastener and the nose easily being released.  Again like the issue with joining up assemblies in tension, the nose and moncoques do not want to have large threaded assemblies inside them.  So the F1 nose is mounted much like the quarter turn fasteners used for right angle joints in Flat pack furniture.



These consist of a pin and a cam fastener, where a rounded end feature of the pin slides into the tapering slot around the barrel shaped cam fastener.  When the cam is turned, the slot pulls the pin in tightly towards it making for a stiff assembly and the taper provides enough grip on the pin to prevent it loosening.  Usefully for quick nose changes, the reverse process to loosen the joint, the pin is ejected by the tapered slot helping the nose come off the front bulkhead.


Tyre Squirt and Tyre Squirt Slots Explained

TSqS- (1)

The unwanted effect of airflow being diverted by the rear tyre under the floor has been understood for some time. The trend towards needing a lower Lift\Drag ratio and higher rear ride height has brought this issue into greater focus in the past seven years. Last season saw the slots used to offset this effect, known as tyre squirt, grow increasingly in significance and number.

Continue reading

Marussia Coanda Duct – 3D Printed Titanium

Coanda- (5)

Since 2010 this blog has covered a lot about exhaust blown Diffuser (EBD) technology, especially in the latter years when it was allowed in F1, with the use of the Coanda effect.  Now three years on, some of the manufacturing processes that allowed such rapid development of EBD’s can be revealed, especially with the use of 3D printed titanium parts.  Here we have a printed titanium coanda duct from the Marussia Team.

Continue reading

InDetail: KERS Cable and Connectors


When looking at the installation of any Hybrid or Electric racing car, the bright orange cabling is a trademark feature, taking the high currents between the battery, inverter and eMotor. With light weight, reliability and rapid disassembly all factors in the cabling installation, the cable choice and the connector technology are critical and often unappreciated by the fans. I’ve recently purchased some Ex-F1 DC connectors\cables which give us some appreciation of the tech involved here. These are both Red Bull RB8 (2012) parts, taken from the DC (battery to inverter) bus. Rather than simply being big fat copper cables with two pin connectors, they are remarkably complex in their design.

Continue reading

InDetail: RBR KERS Battery case


During the F1 KERS era (2009-2013), Red Bull Racing adopted a unique battery set up. Rather than in a recess under the monocoque\fuel tank, the battery is split up into three separate units around the gearbox. I’ve explained the KERS installation in previous posts (LINK), but I’ve recently acquired a 3D printed mockup of one of the side mounted battery cases. This gives us some unique insight into the battery case’s dimensions and layout.

Continue reading

W-Duct: FIA move to ban wastegate based Drag Reduction Devices

It’s been discovered the FIA have issued a Technical Directive in response to a team’s request for clarification on potential exhaust aero interaction with the 2016 exhaust tailpipe rules.
In September last year, the FIA confirmed the change in the exhaust tailpipe regulations that separates the pipework for the wastegate\s from the turbo. This move was made in order to add to the sound, previously muted by having both devices blowing through the same tailpipe. To prevent any obvious aero trickery with blown effects from the extra tailpipe\s, the rules fix the pipe’s exit in the same area as the current tailpipe. However, opening up the exhaust outlets could still bring some potential exhaust interaction with the aero, along the lines of the F-Duct or Drag Reduction Duct. This new FIA TD bans any interaction between the exhausts and fluidic switches.

Continue reading