Flat Pack F1 Car: Assembly with Ikea Bolts

ikeanboltsmerc2

F1 rightly occupies a place at the top end of engineering and technology. But that is not to say that F1 cannot take inspiration from most unusual of places.  Many who follow this blog have inevitably been involved in the technically taxing assembly of flat pack furniture.  Unbeknown to us the clever fasteners used in straight and right angle butt joints are equally at use in F1 cars!

 

Barrel Nuts

Ikea_BarrelNut

Fastening thin bodywork or even larger structures like engines together on an F1 car is always a problem.  Stiffness and lightness are the key aim, but carbon structure of the car is an obstacle to both at times.  As these joints tend to work in tension, part-A wants to be bolted to part-B, tightened and then not fail when under load.  An obvious way to do this is to has a threaded bolt going into a threaded insert.  Placing a threaded insert into a F1 carbon structure is difficult, both as the insert invariably requires another metallic part to be bonded into the structure, then there needs to be enough structure to prevent the insert pulling out or the insert’s threads failing.

barrelnut_PU_Tub

This problem is analogous to bolting crumbly chipboard sections together in your Ikea furniture, the point loads of a threaded fastener do not work in chipboard and the low cost aspect of flat pack furniture deters the addition of stiffening threaded inserts into the otherwise cheap chipboard matrix.  So we see joints made up of fasteners going into larger diameter barrel nuts.  The barrel nut provides the stiff threaded structure but its large size means it spreads its loads effectively into the chipboard, reducing the point load in the chipboard itself.  While a fastening solution good for tension, but not good for torsion, we also see these flat pack fortunate joints aided by wooden dowels to prevent the structure twisting and pulling the barrel but fastener in ways that might break the chipboard.

barrelnut_RWEP

Just the same approach is used in F1, the strong tensile joint of a bolt into a barrel nut perfectly suits the issue with carbon fibre.  Now a large diameter hole is needed in the carbon, no metallic insert is required, just the replaceable barrel nut.  So we can see the engine is bolted into the back of the Monocoque with just such a flat pack solution, thin sections of bodywork such as the rear wing endplate mounting are joined with barrel nuts, creating the stiff aero assembly without the need to compromise the thinness of the parts for a stronger bolted up assembly

 

Cam lock fasteners

Ikea_camlock

Another flat pack feature that translates to F1 cars is the way the nose bolts to the chassis.  We often see damaged noses replaced in seconds at a pit stop with the mechanic quarter turning a fastener and the nose easily being released.  Again like the issue with joining up assemblies in tension, the nose and moncoques do not want to have large threaded assemblies inside them.  So the F1 nose is mounted much like the quarter turn fasteners used for right angle joints in Flat pack furniture.

ikeabolts3

ikeabolt-nose

These consist of a pin and a cam fastener, where a rounded end feature of the pin slides into the tapering slot around the barrel shaped cam fastener.  When the cam is turned, the slot pulls the pin in tightly towards it making for a stiff assembly and the taper provides enough grip on the pin to prevent it loosening.  Usefully for quick nose changes, the reverse process to loosen the joint, the pin is ejected by the tapered slot helping the nose come off the front bulkhead.

ikeabolts4

Tyre Squirt and Tyre Squirt Slots Explained

TSqS- (1)

The unwanted effect of airflow being diverted by the rear tyre under the floor has been understood for some time. The trend towards needing a lower Lift\Drag ratio and higher rear ride height has brought this issue into greater focus in the past seven years. Last season saw the slots used to offset this effect, known as tyre squirt, grow increasingly in significance and number.

Continue reading

Marussia Coanda Duct – 3D Printed Titanium

Coanda- (5)

Since 2010 this blog has covered a lot about exhaust blown Diffuser (EBD) technology, especially in the latter years when it was allowed in F1, with the use of the Coanda effect.  Now three years on, some of the manufacturing processes that allowed such rapid development of EBD’s can be revealed, especially with the use of 3D printed titanium parts.  Here we have a printed titanium coanda duct from the Marussia Team.

Continue reading

InDetail: KERS Cable and Connectors

Connex1-back

When looking at the installation of any Hybrid or Electric racing car, the bright orange cabling is a trademark feature, taking the high currents between the battery, inverter and eMotor. With light weight, reliability and rapid disassembly all factors in the cabling installation, the cable choice and the connector technology are critical and often unappreciated by the fans. I’ve recently purchased some Ex-F1 DC connectors\cables which give us some appreciation of the tech involved here. These are both Red Bull RB8 (2012) parts, taken from the DC (battery to inverter) bus. Rather than simply being big fat copper cables with two pin connectors, they are remarkably complex in their design.

Continue reading

InDetail: RBR KERS Battery case

Battery_top

During the F1 KERS era (2009-2013), Red Bull Racing adopted a unique battery set up. Rather than in a recess under the monocoque\fuel tank, the battery is split up into three separate units around the gearbox. I’ve explained the KERS installation in previous posts (LINK), but I’ve recently acquired a 3D printed mockup of one of the side mounted battery cases. This gives us some unique insight into the battery case’s dimensions and layout.

Continue reading

W-Duct: FIA move to ban wastegate based Drag Reduction Devices

W-Duct-simple
It’s been discovered the FIA have issued a Technical Directive in response to a team’s request for clarification on potential exhaust aero interaction with the 2016 exhaust tailpipe rules.
In September last year, the FIA confirmed the change in the exhaust tailpipe regulations that separates the pipework for the wastegate\s from the turbo. This move was made in order to add to the sound, previously muted by having both devices blowing through the same tailpipe. To prevent any obvious aero trickery with blown effects from the extra tailpipe\s, the rules fix the pipe’s exit in the same area as the current tailpipe. However, opening up the exhaust outlets could still bring some potential exhaust interaction with the aero, along the lines of the F-Duct or Drag Reduction Duct. This new FIA TD bans any interaction between the exhausts and fluidic switches.

Continue reading

Project Controller: Using a Car as a Games Controller!

PC_Driving

Back in November I was invited to Sweden to see a unique project, where Nissan Sweden have sought to turn an entire car into a games controller with their leftfield ‘Project Controller’. They have connected a Nissan Qashqai to a Sony Playstation4 in order to play football games via the steering wheel and pedals. With their lab set up the game is easily played with steering to direct the players, the pedals to kick and the steering buttons for other functions. The key to the trick is how they have hacked into both the car and games console, without wrecking either of them.

Continue reading