Ferrari: New Front Wing Analysis (summary)

Ferrari tried out a new Front Wing in Free Practice for the Korean GP.  It’s rumoured to be a 2012 part being tested at the final races of this season.  I will write a fuller analysis over the weekend, but here is the summary of its new features.

In layout the wing is a modern take on the 3 element wing and for the first time at Ferrari features and endplate-less design.  Ferrari wing layout has been largely the same since the 2009 F60.  With the endplate and the cascades attached to it removed.  You can see the wing curls down to form the endplate itself.

Rather than a 3-element wing with a mainplane and two flaps, it is formed of a main plane, which is slotted to create two elements for most its span, with a single flap attached behind it.

The vertical sections of wing forming the endplate, are outswept and overlapping.  This allied to the vane (removed in this pic) aids the flow around the front tyre.

Only the inner section of flap is adjustable.  The outer part of the flap is fixed and cannot be adjusted, nor can the middle element as its formed from the structural main plane.  The adjuster mechanism is visible between the moveablefixed section of flap, the socket for the wrench to alter the front flap angle, is also clearly visible.

A legal but flexible T-Tray Splitter: The ‘See-Saw’ solution

For over a decade, the FIA have tried to reduce front wing performance by increasing its ride height. Moving the wing clear of the track for less “ground effect”, reduces the wings efficiency and handicaps downforce. When the major aero rules changes came in for 2009, the loss of the central spoon section and the smaller allowable working surfaces for the front wing, made getting downforce from it even harder.
Through out this period, teams have sought to gain front wing performance, largely by trying to make the wing closer to the ground. Either via flex or by altering the attitude of the car (i.e. rake). As has been explained before in this blog, the issue with making the front wing lower by raking the car is that the T-Tray splitter gets in the way. Teams have sought to make the splitter flexible to allow it move up and allow for a lower front wing.
to combat this the FIA have a deflection test to ensure the splitters are not flexing and that front wing ride height is maintained. In response to accusations about several teams splitters, at Monza last year the FIA doubled the test to 5mm of movement for a 2000 Newton (~200kg) load. Yet in 2011 we still see cars with a nose-down raked attitude and wings nearly scraping the ground. How can a splitter meet the FIA deflection and still flex on track? I have a theory for a splitter construction, that actually exploits the method of the FIA test to provide the splitter greater stiffness during the test.

Typically teams run splitters mounted to the underside of the monocoque. The splitter is often made from metal to act as ballast, with additional carbon fibre bodywork to form the aero surfaces. Beneath the splitter runs the Skid block (plank). Made to FIA dimensions the plank features holes for measuring wear.
The splitter is bolted securely to the underside of the tub by bolts and in some cases with a small strut at the leading to aid installation stiffness. Disregarding the strut, the splitter is effectively installed in a cantilever arrangement. The protruding section of splitter will need to bend upward when grounding on track or on the FIA test rig.

With a typical splitter, wear will occur only at the leading edge of the plank

With a car in a raked attitude, when on track the splitter will exhibit a classic wear pattern, the tip of the splitter will wear away in a wedge shape roughly equivalent to the rake angle of the car. During normal running, for cars with high rake angles its likely no other wear may take place along the length of the plank. If the car runs a front ride height that’s too low, the splitter will wear away leading to exclusion at post race scrutineering.

See-Saw Solution

A pivot half way along the splitter creates a 'see saw' effect

Rather than run a cantilever mounted splitter, my theory would be to run the splitter mounted on a pivot. Taking the length of the removable section of splitter, the pivot woudl need to be half way along its length. Which would be roughly inline with the heel of the monocoque. Not having any significant mount at the rear of the removable section of splitter would allow the splitter to pivot like a ‘see saw’.

With the 'see saw' splitter, grounding on track will bend the plank & create two wear spots.

Now when the splitter grounds on track, the leading edge will tilt up and the trailing edge tilt down. This ‘See-Saw’ effect, will allow a slightly lower front ride height as the splitter will be deflecting upwards. To achieve this the plank will need to flex, as the front section of plank must now be a minimum of 1m long, far longer than the splitter. The drooping trailing edge of the splitter will now make the plank contact the ground, leading to a distinctive wear pattern. Now having plank wear in two placed, beneath the splitters leading edge and the trailing edge. This will also have the benefit of spreading the wear over a larger area of plank and reducing the likely hood that the front inspection hole will be excessively worn. The fulcrum point need not be the overtly obvious pivot I have drawn and the entire exterior of the splitter could be covered in bodywork, which will have enough strength to keep the splitter in place when stationery, but deform enough to allow the splitter to ‘see-saw’. But in this guise the splitter will not have the strength to meet the 200kg load from the FIA test.  so how will it pass the test?

The current format of the FIA test, actually aids the pivoted splitter.

The FIA test is carried out on the multi functional rig that is used for the other regulatory checks. The car is driven up onto the rig and then steel pins protruding up from the rig, locate in corresponding holes in the plank. The sections of floor under the wheel are dropped away and the cars ~580kg (640Kg less driver) weight sits on its belly (the plankreference plane floor).
Then a hydraulic strut with load and displacement sensors extends upwards beneath the front splitter. The 2000n load is applied and the deflection measured.

With a typical splitter the FIA load bends the splitter like a cantilever

For a cantilever splitter, the test tries to bend the splitter upwards straining on the bolts at its tail end.

For a 'see saw' splitter, the weight of the car is on one side of the fulcrum, making it harder to deflect the other end upwards

Where as for the ‘see-saw’ splitter the test tries rock the splitter, effectively trying to bend the splitter like beam about its fulcrum. But the cars weight is sitting on the tail end of the splitter, preventing the splitter tilting upwards. As long as the splitters beam strength is enough to meet the test, then it will pass. Being a long metal structure, it should not be hard to make the splitter strong enough.
So as the FIA tests the cars weight sat down on the splitter, it actually aids the splitters ability to beat the test. If the test were to apply the load to the splitter, when the car is supported on its own wheels and not its floor, then the car would surely fail the test.

The biggest flaw is this theory is the wording of article 3.17.5 which describes the test and the mounting of the splitter. But typically the FIA rules are both vague and overly specific at the same time. The regulation states that mounting between the “front of the bodywork on the reference plane” and the “survival cell” (Monocoque) must be not be capable of deflection. The definition of “front of the bodywork” might mean its leading edge, but might not incorporate stays further back along the car. Equally the design of the fulcrum need not be the pivot I drew, but a simpler solid but flexible part, that is not suspected to deflect.
As with all borderline legal parts, this would need to be carefully assessed against the wording of the rules. But where’s there’s ambiguity, there’s a chance to exploit.

The legal interpretation of the regulations not withstanding, this is a feasible solution.  The biggest risk to running it, is if the FIA change the test process without notice.  This could catch the team out, although normal FIA process is to warn the team and ask for the design to be altered and pass the test at the next event.  Thus unlikely to cause an exclusion or  ban.


Footnote: A team have asked the FIA for clarification on the use of this splitter construction with a view to using it themselves.  Charlie Whiting has made it clear it would not be and added that the deflection may now be altered to ensure the rules and test are not being exploited.

Sauber: Suzuka updates

Sauber produced a major upgrade for Suzuka, which comprised of “new front wing, new rear wing, new turning vanes and side pod deflectors, new brake ducts and modifications to the floor”. Most visually different was the front wing which is covered in detail here. But the other upgrades were just as important. The rear wings frontal profile forms a slight “M” shape, with the leading edge being slightly lower at its outer and central points. The sidepods have been revised with a new cooling exit panel and the exhaust tucking back into the coke bottle exit, thus no longer in a Red Bull “outer blown” style.

In detail the front wing sports a new profile and revised endplates. The leading edge forms a fairly flat profile and then lifts into an arc to meet the endplate. In a similar way that Red Bulls wing meets the FIA central section at 90-degrees. As such it aims to achieve the same function to create a strong vortex, in Saubers case to carry airflow out around the front tyre.

The wing is formed of three main elements, the main plane being very short with much longer chord flaps behind it. As is common for most teams now, the flap adjusts cross about 75% of the span. The outer 25% section being at a fixed angle of attack, as it forms part of the endplate. Along the intersection between fixed and adjustable sections of flap, Sauber fit the pod for adjusting the front flap angle (FFA), used during pitstops.

Atop the endplate is the revised vane and cascade arrangement. The vane is now more rectangular in appearance and serves both to direct airflow and meet the minimum side-elevation bodywork surface area for the endplate. To this are fitted two cascade elements, a larger two element winglet and the smaller single element winglet. These downforce producing sections also are angles to aid the general outswept airflow in this area.

McLaren: Suzuka upgrades and design overview

McLaren have proven to be Red Bulls nearest competitor for most of the season. While not quite having the same raw pace as the RB7, the MP4-26 is as fast on race day and arguably can be easier on its tyres. Having started with two bold concepts the “U” shapes sidepods and the mysterious “Octopus” exhaust, the design had to be compromised to ditch the complex exhaust and revert to a Red Bull style outer blown diffuser. Leaving McLaren with a large amount of space under the gearbox, that was supposed to package the exhaust. This left the car with a higher rear CofG without the benefits of the exhaust to offset it. So it’s been remarkable that McLaren have been able to morph the initial concept into a race winning, Red Bull baiting package.
The pace of development never slows, So McLaren arrived at Suzuka with a new diffuser detail and another iteration of its Silverstone short-chord rear wing.

Following a lot of the rest of the paddock , McLaren added a diffuser flap across the top edge of the diffuser exit. The flaps profile only being broken by a large gurney flap under the rear crash structure. As already discussed in the Red Bull Monza diffuser article (, this flap is an evolution of the trailing edge gurney, used to create lower pressure aft of the diffuser for more downforce. McLaren can run such a large central gurney flap as it sits in a 15cm window in the bodywork rules that allow taller bodywork. Its also beneficial as the raised rear crash structure (for the “octopus” exhaust) allows a good airflow to pass underneath it towards the gurney.

Again we saw McLaren run the short chord DRS rear wing, allowing the team to use the DRS more frequently during qualifying runs. This wing has already been detailed in the blog (

Further down the car, we can see the rear brake duct cascade. Rules allow 12cm of bodywork inboard of the rear wheels, there is no stipulation that these function as brake cooling ducts, so teams exploit this for ever larger stacks of aerofoil sections to gain downforce directly acting upon the wheels.
McLaren have also altered their exhaust system over recent races, switching from a simple oval profile tail pipes, for pipes that pinch-in to form a nozzle at their exit. Also the detailing around the floor area varies by track, with more or less floor being cutaway around the exhaust exit. This alters the amount of exhaust flow passing beneath the floor to suit differing ride heights. As one of the functions of the EBD is to act to seal the diffuser, often likened to a virtual skirt. The high energy exhaust gas, prevents other airflow entering the diffuser, thus maintaining downforce.
Its no surprise given the proximity of the brake ducts to the exhaust outlets, that the lower stack of brake duct aerofoils are heat protected. No doubt some of the exhausts energy is used to drive airflow under the ducts to create more downforce.

McLaren use a split cooling outlet set up, rather than Red Bull who tend to focus all the outlet area into the large bulged exit high up on the engine cover. McLaren’s main outlets are the exit to the sidepods coke bottle shape. With outlet area to the side of, and above the gearbox. This is aided by 3-slotted louvers on the flanks of the sidepods.

Lastly McLarens unique sidepod design is clear to understand from this angle. The “U” pods create a path for the airflow passing over the centre of the car, to reach the rear wing relative unobstructed. Typically airflow closer to the cars centreline is cleaner and has more energy. This is why designers tend to use this airflow to feed the sidepods for cooling purposes. What McLaren have done is to compromise on the cooling efficiency for greater rear wing performance. The small fin inside the channel is used to create a vortex to main the airflows energy and direction through the channel.

Red Bull: Splitter scandal 2011?

Photo Copyright: Wolfgang Wilhelm/ Auto Motor und Sport

Following on from the Monza footage of the Mark Webbers Red Bull being lifted on a crane over a spectator area (, German Magazine ‘Auto Motor und Sport’ (AMuS) reported that the legality of the front splitter could once again be called into question. The footage shows the wear marks on the skid block (plank) under the car, with the wear focussed across the protruding section of splitter.

Last year Red Bull as well as other teams were suspected of having a flexible splitter. In order to run lower front ride heights to gain more front wing performance, the splitter gets in the way. Making it bend upwards, allows the crucial nose-down raked attitude required to exploit the current rules. So last year the splitter test was made more severe and also included tests to ensure the splitter couldn’t twist to avoid wear.

AMuS suggests the wear on the splitter is limited to this front section of the plank, the splitter ‘bending’ to spread the wear and avoid infringing the rules on post-race plank thickness. (  Wear is evident on the picture (above) of Mark Webbers cars from Monza.  This wear pattern, is backed up by a view of Vettels RB7 being craned off the track at Suzuka (not shown here), which also suggests the wear is focussed to the front 50cm of plank and not merely the leading edge where the FIA measure wear.

When raked, the splitter should wear in a taper from the leading edge

Wear only at the front of the plank is understandable; such is the nose-down attitude of the Red Bull, very little of the rest of the plank is within reach of the ground. But one would expect the wear to take a wedge shape section out of the plank, at an angle similar to the cars angle of rake. Instead the wear is focussed evenly across this front section of floor, indeed this picture suggesting the greater wear is at around 50cm back front the tip of the block.

Looking at the underside of other cars that had been craned off the track at Monza, their wear is across a greater section of plank, with no highspots of wear midway along their length.

Working how Red Bulls unusual wear pattern is created is a conundrum. The wear could simply be the result of going across kerbs during the accidents and doesn’t occur during normal running. Or the wear could be a literal interpretation of the rules, the leading edge meets the FIA vertical load test, but the splitter articulates further back along its length, to present the splitter at a flatter angle to the track to reduce wear and provide a lower front ride height. Such a set up would meet the wording of the rule 3.17.5 on the deflection and construction of the splitter. As the articulation may be at the point where the tail of the splitter meets the chassis and hence not directly affected by the FIA test and inspection of the leading edge of the splitter.

3.17.5 Bodywork may deflect no more than 5mm vertically when a 2000N load is applied vertically to it at three different points which lie on the car centre line and 100mm either side of it. Each of these loads will be applied in an upward direction at a point 380mm rearward of the front wheel centre line using a 50mm diameter ram in the two outer locations and a 70mm diameter ram on the car centre line. Stays or structures between the front of the bodywork lying on the reference plane and the survival cell may be present for this test, provided they are completely rigid and have no system or mechanism which allows non-linear deflection during any part of the test.
Furthermore, the bodywork being tested in this area may not include any component which is capable of allowing more than the permitted amount of deflection under the test load (including any linear deflection above the test load), such components could include, but are not limited to :
a) Joints, bearings pivots or any other form of articulation.
b) Dampers, hydraulics or any form of time dependent component or structure.
c) Buckling members or any component or design which may have, or is suspected of having, any non-linear characteristics.
d) Any parts which may systematically or routinely exhibit permanent deformation.

Regardless, the Red Bull passes the current stringent FIA scrutineering tests and with the precedent set last year, the car is therefore legal.

No further discussions on the subject appeared over the Suzuka weekend, so this doesn’t appear to be an issue. Again it’s left up to the other teams, to find a way to obtain the raked attitude to gain front wing performance, without excessive plank wear.

Thanks to Auto Motor und Sport for the permission to use their photogaphs with in this post.

Red Bull – Monza Diffuser Analysis

Red Bull appeared in Monza was a further development of their diffuser. Changes largely appeared to be focussed on the treatment of the trailing edge of the bodywork. For Monza the diffuser gained a flap around almost the entire periphery of the trailing edge.

Highlighted in Yellow, RBR had a flap spanning around most of the diffusers trailing edge

This flap has been used above the diffuser since the start of the season, but the flap has been narrower, being only fitted in-between the rear wing endplates. As explained in my analysis of the floor as seen at Monaco ( ).

Many pictures were taken of the flap now extending around the sides of the diffuser, which I tweeted about during the Monza GP weekend. But it was the fan video taken during the race, as Mark Webbers stricken RB7 was craned off the track that has shown the floor in greater detail. The video posted on by atomik153 and seen here ( ). This clearly shows the floor from about 3m 40s into the clip. Obviously this must have been unpleasant for Red Bull as the floor is so clearly visible, I know that the other teams have seen this clip. Many fans having seen the detail at the back of the diffuser and suggested the slot created around the diffuser was some form of double diffuser or cooling outlet. While the pictures might suggest this, the slot is merely the gap between the aerofoil shaped flap and the diffuser.  This following illustration shows how the flap is actualy shaped.  There are two parts; the new curved side sections and the pre-existing top sections.

When exploded, you can appreciate how the new bodywork forms a flap around the diffuser

Diffuser trailing edge theory

Few ideas in F1 are new, merely older ideas reinterpreted and expanded upon. This flap is not a new idea, its merely an extension of the gurneys teams have been fitted to the trailing edge of downforce producing devices since the sixties. Gurneys have been added to the end of a diffuser to aid the low-pressure region above and behind the diffuser. This practice has been increasingly important with the limit on diffuser height and other rules banning supplementary channels such as the double diffuser. As far back as the late nineties teams replaced this gurney with an aerofoil section flap. Notably Arrows and latterly Super Aguri used flaps placed above the diffusers trailing edge.

The need for this sort of treatment at the back of the diffuser might at first be confusing. A diffuser is a part of the underfloor, by accelerating air under the floor, low pressure is created and thus downforce is generated. With so many restrictions on the geometry of the floor and diffuser, teams cannot simply enlarge the diffuser for more performance. So they are forced into working different areas of the device harder for the same effect. One area is maximise pressure ahead of the floors leading edge, the other is the lower the pressure behind the trailing edge. This helps flow out of the diffuser, to maintain mass flow under the floor. Although the rules limit the height of the diffuser, this is only the height below the tunnels to the reference plane. Teams have a small amount of space above the diffuser for bodywork and the common gurney fits into the area. Gurneys work by creating a contra rotating flow behind the upright section, this creates low pressure and helps pull airflow from beneath the wing. On a diffuser this has the same effect as a slightly higher diffuser exit.

A gurney creates low pressure by the contra rotating vortcies behind the gurney

The gurney can work above the diffuser, as teams have been paying so much attention to getting high pressure air over the top of the diffuser. This airflow is used to drive the vortices spiralling behind the gurney flap. The better the airflow over the diffuser to the gurney the more effective it can be.   However Gurneys cannot be infinitely increased in size and still maintain their effect. As the gurney gets too large the dual vortices break up and the low pressure effect is lost. Many teams have found this limit this year and have moved to the next solution which is a perforated gurney.

A perforated gurney can be larger as it's offset from the diffuser allowing airflow to pass under the gurney

This is a similar vertical device fitted to the diffusers trailing edge, but there is a gap between the bottom of the gurney and the diffuser. Airflows through this gap to create the distinctive contra rotating airflow behind the gurney. Again this has the same effect as creating a larger diffuser exit and hence creates more downforce.

An aeroil shaped flap can be larger and more efficient than a Gurney

While the gurney is a relatively blunt solution, Such is the quality of the airflow over the diffuser now that teams are able to fit a more conventional aerofoil shaped flap above the diffuser for a similar effect. Without the contra rotating flow of the gurney this solution can be scaled up, as long as the flow to the flap is maintained. Many teams have this solution fitted along the top edge of the diffuser. Although Red Bull are the only teams to have fitted to the side of the diffusers trailing edge. Increasingly teams are seeing the diffuser exit as a 3D shape, the diffuser not only diverges vertically at the exit , but also laterally. No doubt exhaust blowing does allow some of these devices to be effective.

In Detail: The flap on Red Bulls diffuser

We can expect its use to be expanded for next year with larger flaps above the diffuser and flaps around the entire periphery of the diffuser. A long with Rake this will be a critical design feature for 2012, as a result sidepod design will become one of the critical factors in aero design, making sure the top of the diffuser is fed with good airflow. As so few other areas provide potential gains for improving aero efficiency.

Other notes on the Red Bull Floor


Red Bull fit three fences in each side of the diffuser, these prevent different pressures regions migrating from one side of the diffuser to another. They help maintain downforce and sensitivity. Its interesting to note the fences are not triangular in side profile, I.e. that they don’t meet at the kick line between the floor and diffuser, instead they start a few centimeters behind the axle line with a rounded vertical leading edge.

Starter Motor Hole

As mentioned in the Monaco RBR floor analysis the starter motor hole is blown by ducts in the upper side of the floor. This injects some energy into the flow in the middle of the diffuser. This so called boat-tail section is where the steeped underbody merged with the higher step plane. With the lower centre section and plank, getting airflow into the area is difficult and separation can easily occur if the angle of the floor is too steep. Having the starter motor hole blown helps maintain airflow in this area.

Metal Floor

Exhaust Blown Diffuser Flow

Renaults New Front Wing

Renault have for some time been the team leading with innovations in front wing design. Renault first introduced the feathered set up on the inner tips of the wing last year, by tapering the slot gap between the flaps. Many teams have already copied the feathered design.

Renaults flap is now split into two

But now Renault have gone even further with the concept. In recent races the team have produced a new take on the flap design. The version raced since Germany has split one of the flaps into two. This along with the slot in the main plane creates a stack of five elements for a small span of the front wings width. But in contrast to other uses of extra slots in the front wing, this is not to create a section producing high downforce. Instead each of these steps is designed to create tip vortices to drive airflow along the Y250 axis.

The main plane also has slot ahead of the bulged section in front of the flap

Teams tend to create the greater amount of downforce towards the front outer wing tips. This pressure distribution reduces the load on the inboard end of the wing, in order to better manage the airflow over the centre of the car. However what teams do want to do is to use the relatively undisturbed airflow along this axis and use it to drive airflow over the centre of the car. A steeper wing towards the neutral 50cm centre section of wing would produce unwanted turbulence and rob the airflow of energy. The bodywork rules do allow for some creativity with the vanes and other bodywork allowed along the edge of the monocoque. Known as the Y250 vortex, as most of the aerodynamic effects are created along a line starting 25cm from the cars centreline (Y= lateral axes, 250mm). Components that work along this axis include the front wing mounting pillars, any under-nose vanes, the T-Tray splitter and the intersection of the front wing and the neutral centre section. Flow structures along this axis drive airflow under the floor towards the diffuser and around the sidepod undercuts. Each with the aim to create more efficient rear downforce.

There are effectively five elements created by the four slots (arrowed)

If Renault created a single front wing element with the same angle of attack, a single large vortex would have been produced. This would be far more powerful and pointed outwards a smaller area downstream on the car. By splitting the wing into smaller separate sections, several smaller vortices are created. These are each of lower energy and are spread over wider area. Perhaps this softer approach creates less sensitivity as the cars attitude changes. It will be interesting if any teams has been able to replicate this design by the time their new bodywork arrives at Spa.

Analysis: McLarens Rear Wing Vapour Trails

Picture courtesy of F1Pulse

A feature of F1 for many years were the vapour trails spiralling off the rear wing tips. This phenomenon largely disappeared a few years ago, but was apparent once more on the rear wings of the McLarens at the recent damp race weekends. So what are these vapour trails and why do McLaren tend to create them more than other teams?

They are in fact more correctly termed ‘vortices’, they are created when the pressure differences are created at the wing tip. As you get high pressure above the wing, low pressure beneath and near ambient pressure to the side of the endplate. When these three flows meet, the higher pressure flow naturally moves towards the low pressure areas. This sets up a tumbling motion and a spiralling flow structure is created. As we know from the aerodynamicists use of vortices to shape and alter flow over other areas of the car, vortices are extremely high energy structures. But with them comes a lot of drag. These wing tip vortices rise upward and outward from the rear wing tips and eventually flatten out behind the car as their energy is dissipated in the free stream flow around the car.
The greater the pressure differential, the greater the vortex created, and this is generally seen better in damp conditions as the water in the air condenses in the vortex to become visible as a vapour trail.

In years gone by, the site of vortices spiralling from wing tips was seen as a good thing, as the belief that the wing is working hard. To some extent this was correct, with a simple wing the fact that it can create visible vortices did prove the wing was highly loaded. However the drag that it created was less well understood. Since the early 2000’s teams have sought to reduce this pressure difference at the wing tip, in order to reduce drag. Several solutions have been tried to alleviate the pressure differences at the wingtip.

As F1 rear wing have such small aspect ratio’s, (width versus length), there’s little that can be done to reduce this high pressure created towards the endplate without sacrificing total downforce created by the wing. Teams have experimented with twisted wing profiles, reducing the angle of attack of the wing cross section nearer the endplate, to reduce the high pressure created above the flap. But this in turn reduces the downforce created by that section of wing. At tracks where lower downforce is required, teams will still ease the loading of the outer part of the wing, centering the pressure distribution in the middle of the wing.

The other option is to allow the whole span of the wing to be aggressively steep, but use other methods to reduce the pressure difference at the wing tip. Firstly teams such as BAR created a cut-out in the end plate ahead of the flap, this allowed some of the high pressure above the flap to bleed off outside the flap, negating the pressure difference and therefore the strength of the vortex. But this was a fairly blunt solution, so teams created the now-common louvers in the endplate.

This solution directs some of the high pressure air above the wing to the wing tip in a more elegant way. Renault, then latterly Honda and McLaren created a different approach by merging the flap into the endplate, this creates a small gap to direct the high pressure flow to the wing tip.

In the past two seasons reducing this effect has been negated somewhat by other means to reduce the rear wings drag. In 2010 the F-duct allowed the driver to reduce the rear wing downforce and therefore drag. In wet races in 2010 we saw the McLaren’s exit a turn, as speed built up the vortices would appear, then as the driver closed the cockpit control duct the rear wing stalled downforcedrag was instantly reduced. As the driver did this, the vortices also disappeared. This allowed us to see just how soon the F-duct was engaged out of turns.
With the F-duct banned and DRS allowed for 2011, teams are able to adjust the rear wing in qualifying and for overtaking in the race. Depending on the teams qualifyingrace strategy, they have redesigned their rear wing to have a different flap size. A small flap, means that the DRS effect is larger, more downforce and drag are shed for more top speed. However the smaller flap means that the rear wing is limited in the downforce it can create, as the sot gap is further back on the wing and separation is likely with aggressive angles of attack. Most teams have followed a design path that errs on this level of DRS effect. As the wing tip is not loaded so highly, there are few vapour trails created.
McLaren however have been almost alone in creating a DRS wing with a large flap, this creates the opposite characteristics of a small flap wing. Less DRS effect is created, but the wing can create a larger amount of downforce when DRS is not activated. Thus their rear wing is steeper and more heavily loaded at the wing tips.

Its for this reason that McLaren tend to be the team in 2011 that create the vapour trails on damp days. McLaren do however have a small flap DRS wing in development. We can expect this to create less trails than their current if it gets to be run in the damp.


Ferrari rear end – Exhaust and DRS Mechanism

A ScarbsF1 follower in the Melbourne pit lane sent me these exclusive pics. We can see the Ferrari stripped in the garage. There’s a huge amount of detail to take, but the key things are the exhaust routing for the EBD, the rear suspension and Rear Wing mechanism.

The exhaust loops forwards before turning back on itself to route towards the diffuser. This set up is used as it keep the exhaust well forwards within the sidepod, which helps to keep the sidepods tight and slim. We cant see the final section of floor, this might need to be removed in order to take the floor off.

Ferrari retained the pushrod rear suspension set up for the F150. To keep it competitive in aero packaging in comparison to the recently favoured pullrod, they have pushed the entire rocker and damper assembly to the front of the gearbox. In doing so they have placed the rockers nearly flat with their pivots pointing down. This keeps the assembly in the aerodynamic shadow of the engine and airbox, so effectively they don’t add any volume to the rear ends aerodynamics.

Lastly the “Drag Reduction System” mechanism can be seen sticking out of the gearbox. This is a hydraulic system and needs to be powerful in order to move the rear wing flap at quickly at speed. As both the flap will be heavily loaded by airflow and designers want the switch from closed to open to be in a matter of milliseconds.

Follow ScarbsF1 on Twitter

Trends 2011 – Exhausts and Diffusers

This year the technical talk has largely been about exhausts.  How teams have adapted to the ban on double diffusers and the added restriction on Exhaust blown diffusers. Just to aid understanding going into the new season, I have explained how these solutions work and how they look from beneath.

Double Diffusers

Force India 2010 Double Deck Diffuser (DDD)

Since 2009 the regulations regarding the floor have been interpreted in a literal sense to allow the double deck diffuser (DDD). Indeed the very same rules were exploited to a lesser extent under the previous rules, but this only produced small extra channels in between the outer and middle diffuser tunnels. With the major cut in aerodynamic aids for 2009, several teams sought to find a way to gain more expansion ratio from the smaller diffusers. In essence the loophole exploited the definition of surfaces formed between the step and reference planes. Multiple surfaces allowed fully enclosed holes, which fed the upper diffuser deck that sat above the 175mm lower diffuser. This allowed diffuser to be significantly larger in order to create more downforce. Notably Brawn, Williams and Toyota launched 2009 cars with DDDs. Other teams soon followed suit in 2009 and last year every car exploited the same loophole. Over the winter the FIA acted to close the loophole, by enforcing a single continuous surface across a 90cm span under the floor. In a stroke this banned the double diffuser, there being no scope to create any openings in the floor to feed the upper deck.

Single Diffuser

Double Diffuser


Exhaust Blown Diffusers
Another approach to regain lost downforce was the re-invention in 2010 of the exhaust blown diffuser (EBD). This used high energy exhaust gasses to blow the diffuser, the faster throughput of flow under the floor increased downforce. Two methods of EBDs were used in 2010, one blowing over the diffuser and the second blowing inside the diffuser. This latter solution was more effective at driving flow through the diffuser and created more downforce. However this necessitated a hole made into the diffuser to allow the exhaust gas to enter, I‘ve termed this method an ‘open fronted diffuser‘.

2011: No openings allowed in the yellow 90cm zone, outside certain holes are permitted

A by product of the 2011 rules intended to ban the DDD, also stopped this open fronted diffuser solution. However the rules enforced the continuous surface only across a 90cm width of floor and the diffuser is allowed to be 100cm wide. Thus a 5cm window was allowed each side of the diffuser.

Outer Blown Diffuser – Solution

Red Bull Diffuser: Flow passes under the outer 5cm of floor into the diffuser

Red Bull and Ferrari appear to have found this loophole simultaneously. Recently Sam Michael pointed out this was probably the most efficient way to blow the diffuser under the new rules. As Red Bull appeared with this set up first, its often termed the Red Bull Blown diffuser.

What these teams have done is to open up the floor 5cm either side of the diffuser, then route the exhaust towards this opening. The exhaust gas gets collected by the coved section of floor and this directs the high energy gasses under the diffuser, to recover some of the losses from the more open diffuser allowed last year.

Front Exit Exhaust

Renault Front Exit Exhaust: Flow passes wide around the floor before entering the diffuser

Renault meanwhile turned the problem on its head. As the aim of the EBD is to increase flow under the car, they pointed their exhaust at the front of the floor. I’ve had it confirmed to me by two ex-Renault sources that the exhaust does indeed mainly flow under the floor.

The exhaust pipe outlet sits above the step plane just ahead of the leading edge of the floor. This is not simply blowing out horizontally and across the floor, but is ducted slightly to blow downwards and backwards, this is roughly in line the with the flow trailing off the “V” shape above the splitter. Along with the strong vortices set up by the splitter, vanes and bargeboards, this makes the floor appear wider than it is. The flow will go out beyond the floor and then curl back in and under the floor. Some flow will inevitably pass over the floor, but the most of the energy will be driving more flow under the floor to the diffuser.

McLarens Slit Exhaust

The slit above the floor is visible. Copyright: Liubomir Asenov

No conversation about exhausts this year, would be complete without some speculation about McLaren. Amongst the several exhaust systems run by McLaren over the pre-season tests was a “slit” exhaust. This appeared at the first Barcelona test, but did not seem to appear for the second Cataluña test. The exhaust collector could be seen to duct towards a double thickness section of floor ahead of the rear wheels. This section was also interesting for its longitudinal slot, this slot was not large enough to be the actual exhaust outlet, This might be a cooling slot, or to improve the flow from above to beneath the floor.  I beleive the Exhaust is actually below the floor.  As when the car ran the same floor with a conventional exhaust outlet, there appeared to be a removable section of floor ahead of the rear wheels. Being just outside of the 90mm opening rule, the floor ‘could’ be opened to allow an exhaust to blow through to underneath. If sculpted correctly, the exhaust could be ducted back inboard and blow towards the diffuser from under the floor. It’s possible that this could be in interpretation of a legal opening, assuming it met the maximum fillet radius rules.
I’d expect the resulting exhaust outlets to be a long wide slot, this wider outlet would be needed to meet the maximum radius rules and also reduce the back pressure from the tight curve of the exhaust outlet. As the exhaust would have a tortuous bend, to curl back under itself to direct the flow inboard, rather than out wide around the rear tyre.

Mac Slit: The exhaust might exit beneath the floor in a long narrow outlet

Follow ScarbsF1 on Twitter