Red Bull: Bahrain Sidepod Analysis

Having been slightly off the pace in the opening three races, Red Bull clearly do not have the RB8 working as they had expected. Pole position in Bahrain doesn’t prove their issues are over, but the car sports a revised sidepod set up this weekend and this has perhaps has unlocked the potential in the car. The new sidepods are a revision of the Version2 spec sidepod/exhaust set up. The Bahrain spec simplifies the sidepod, removing the complex crossover tunnel under the exhaust ramp.

Exhaust Versions

Sidepod Version1

At the cars launch the RB8 features a simple Version1 exhaust set up, aimed at being a benign solution to get the bulk of testing out of the way, without interference from complex exhaust issues. Then later in testing the focus could switch to the greater potential performance offered by the V2 set up. The V1 set up placed the exhaust in board and rearward, blowing under the top rear wishbone. The exhaust flux blew along the tail of the bodywork and under the beam wing. Despite suggestions at the time that this set up was a novel exhaust blown suspension set up; the solution was never intended for race use.

Sidepod Version2


Then on Day11 of the 12 day preseason testing schedule, the V2 sidepodexhaust appeared. A more complex solution than either the McLaren or Sauber set up, the sidepod aimed to both direct exhaust flow at the diffuser and route the sidepods undercut flow to the centre of the diffuser. To do this the sidepod had a more outboard and rearward exhaust position.

The exhaust blows down the tail of the sidepod, over a ramp made to try to attach the exhaust flow to the bodywork via a coanda effect to direct it in the correct gap between the rear tyre and diffuser. This is the same area the teams aimed their exhausts directly at last year. This area helps both seal the diffuser from flow blown laterally from the rear tyres and also the greater mass flow of the exhaust plume creates more flow through the diffuser, with both effects adding downforce. This solution follows the same path as the much applauded Sauber solution. Although the two systems were developed in parallel and RBR did not copy the Sauber after seeing it launch. The RB8 always was planned to run the V2 set up.

V2: a tunnel is created under the Exhaust ramp bodywork (yellow)

V2: Flow from the sidepod undercut passes through the tunnel (yellow)

To keep the airflow passing over the top and centre of the diffuser, teams direct the fast moving flow from the sidepods undercut to this area. In Red Bulls case, the path of this flow is obstructed by the exhaust ramp and plume. To overcome this Red Bull have simply created a tunnel for the air to pass under the exhaust ramp and remerge towards the centre of the diffuser. This solution looks like is major aim was to direct flow to the start motor hole, an area exploited by ductwork on the 2011 RB7. Having more airflow passing into the starter motor hole, makes the hole act like a blown slot, making the airflow better up and under the middle section of diffuser for more downforce. Creating a crossover effect is somewhat like McLarens bulged exhaust fairing, that allow both the exhaust to be directed down to the diffuser edge by the downwash flow over the sidepod, but also creates a channel beneath the exhaust bulge to allow the undercut flow to reach the centre of the diffuser.
So it seems Red Bulls V2 floor make the best of the Sauber Coanda solution and the McLaren undercut solution.

What are the issues?
However this tunnel is compromised by the post-2009 area rules. Sidepod bodywork 50mm above the floor (actually 100mm above the reference plane) must meet tangential and minimum radius regulations. This means Red Bulls tunnel is limited to slightly less than 50mm in height, with a sharp top edge.


It seems it’s this crossover tunnel on the V2 sidepod that is an issue with the car. Recent flowviz tests in free practice were focussed specifically on the tunnel, as well as tests with an array of aero sensors trailing the diffuser in Bahrain. Also an insider tells me that the Red Bulls starter motor might not be creating the accelerating airflow into the steep middle section of diffuser that was envisaged. Instead the starter hole works better when blocked off. Perhaps this crossover tunnel is not flowing correctly to the centre of the diffuser and altering the accuracy of the exhaust flow towards the tyrediffuser intersection.
If the exhaust flow cannot reach the tyrediffuser gap accurately or perhaps more importantly consistently, then the driver will have a car that sensitive to throttle position.
Red Bull have been alleged to have clever engine mappings, cutting down to four cylinders at larger throttle openings at lower revs. This could either have the effect of a softer power delivery for better traction, of greater exhaust flow for more downforce at lower revs. Red Bull and Renault may still be finding ways to gain performance from exhaust mappings and these mapping have been investigated the FIA and shown to be within the regulations.
With several issues around the way the exhaust affects the cars handling, Red Bull said in China that the V2 sidepod was the potentially better solution, but the V1 set up gave Vettel more confidence. Horner admitted that it was possible to get the performance of the V2 with the feel of the V1. At Bahrain it appears that this is what RBR have done.

Sidepod Version 2.1

V2.1: With no tunnel the exhaust flow can pass without interference to the diffuser

These issues may explain the Bahrain sidepod upgrade. This new sidepod set up appears to be a rework of the V2 sidepod, most of the shape remains the same and the exhaust appears to be in the same position. So it looks like the moulds were altered to close off the cross over tunnel create a V2.1 sidepod.
With the tunnel closed off the issues complicating the exhaust and starter motor hole flow have been cleared up. But there still remains an issue with how the sidepod undercut flow reaches the rest of the diffuser. Sauber appear to manage this, but there still may be some potential airflow performance that is lost with this set up. Although the overall effect of an exhaust aimed accurately at the tyrediffuser gap may be a greater gain that that loss.
However with the tunnel gone there is a less complex route for the exhaust to reach the diffuser. With the exhaust flow better managed the intended exhaust effect will more consistent resulting in a better feel for the driver at different throttle positions and car attitudes.

V2.1: Slots in the floor aid the effect in sealing the diffuser

It’s notable that Red Bull have also reintroduced the slots in the floor ahead of the rear tyres, these haven’t been seen for a couple of years, their function is to inject some higher energy airflow into the gap between the tyre and diffuse. This, like the exhaust blown diffuser, offsets the sidewash (known as ‘Squirt’) created by the rear tyres impinging into the diffuser. Again this will all result in greater rear downforce.

If this is the first solution for Red Bulls woes, then it will be interesting how the team develop from the V2.1 sidepod. Perhaps the tunnel will reappear in revised form or a McLaren style solution will be tried.

InDetail: Caterham Front Upright

Not everything in F1 is aggressive, extreme, radical or innovative. In fact in many areas the car’s are very close in general design terms. Some times it’s enough just to soak up the detail engineering and explain what all the little bits and pieces do on the car. In this series of short articles, we’ll do just that, thanks to these amazing photographs from MichaelD. Following on from the details of the Force India front corner, with these photos of the Caterham in Melbourne, we can now see more of the upright design.

Upright


Caterham’s upright is fairly typical of most contemporary F1 designs. By regulation all F1 cars have to use Aluminum for their uprights. This one appears to be a fully machined or perhaps a cast part. Before the restriction to aluminum, investment cast Ti or MMC were common.
In format the upright is tightly fitted between the upper and lower ball joints and the two bearing for the hub. This design has been common in the past ten years, before that the upright tended to be a larger item with a large vaned housing for the bearing that would be the route for cooling air to reach the brake disc. Now teams route the cooling around the upright rather than through it. One exception of this design practice was Honda who routed the cooling air internally through an oversize hub. This design was dropped in 2010, as the design prevented the lower wishbone mount being as high the aerodynamicists wanted.
The upright creates part of the suspension geometry, with the distance between the upper and lower ball joints and the angle between them and the steering axis.
The first observation of a current F1 upright compared to any other racecar is the distance between the upper and lower wishbone joints. The upper joint is probably as high as the 13” wheel will allow, and then the lower wishbone is raised to near the wheels centerline. Having the mounts close together creates more loads in the wishbones and restricts space for a track rod to be mounted high up, with enough of a steering arm length to be efficient. This is a compromise forced by the aerodynamicists, who require the wishbones to be placed in the most beneficial position relative to the front wing upwash.


Due to the offset of the bulk of the upright from the steering axis, the design at first appears to offer a lot of King Pin Inclination (KPI), but closer examination of the ball joints shows them to be relatively normal for an F1 car. An increased KPI angle creates more camber change through steering.
We can see the upper ball joint (UBJ) that links the upright to the wishbone is created with a clevis bolted the upright. The wishbones outer end holds the spherical bearing. Shims between the clevis and the upright adjust the static camber. The lower ball joint (LBJ) is a fixed mounting and is not adjustable. We can see in the case of the Caterham that the lower end of the pushrod is mounted to the wishbone and the not upright. It joins near the spherical bearing in order to keep the bending load in the wishbone end to a minimum.

Adjustments


The steering rack is mounted low down on the front bulkhead and the track rod passes in line with the lower wishbone and attached to its own clevis on the upright. Adjusting camber also adjust steering toe angle, so any change in the camber shims will require a shim altered on the track rod arm. As the clevis is formed by the upright, the track rod arm is split, with the metal end fitting bolting to the carbon fibre arm, a shim in between this joint creates the difference I track rod length.
In between the track rod and lower wishbone is one of the two tethers to hold the wheel on in an accident; there appear to be plastic clips to hold the tether in place between the two parts.

Hub & Bearings


Rotating inside the upright is the front hub, or stub axle. This is a machined titanium part and sits on two bearings. Typically two sets of bearings are used one larger set outboard and a smaller set inboard. From the diameter of the upright you can see the differential in size is quite large. Bearing design is quite secretive, but commonly angular contact ceramic bearing are used. I was told that Honda, who used NTN bearings at the time, would have the bearing last two races and cost several thousand pounds each. Albeit this was at the time they used particularly large bearings to hold the oversize hub. The bearings are located in the upright and the hub and preloaded by the large castle nut visible inboard of the upright.
The hub is hollow and will have openings and pockets machined into it to reduce weight where stiffness isn’t required. The hub also forms part of the brake disc mounting system the wire eroded splined on the flange outboard of the upright mate to matching splines on the brake disc mounting bell. There are also drive pegs to locate the wheel. At the threaded outer part of the hub, the wheel retention system is removed. This is a sprung clip that flicks inout as the wheel nut passes over it during wheel changes. The clip will retain the nut as required by the regulation, should the wheel nut not be tightened sufficiently. It will however not replace the function of the wheel nut in holding the wheel on securely. Drivers leaving the pits will seefeel the wheel wobble slightly, driving for too long will see the retention mechanism fail and the wheel fall off. Typically the hub and wheel nut threaded are handed left of right, to help keep the nut secured.

InDetail: Force India Front Corner

Not everything in F1 is aggressive, extreme, radical or innovative. In fact in many areas the car’s are very close in general design terms. Some time it’s enough just to soak up the detail engineering and explain what all the little bits and pieces do on the car. In this series of short articles, we’ll do just that, thanks to these amazing photographs from MichaelD.
This is the front left corner of the VJM05, seen without the wheel to expose the brakes, suspension mounts, hub and electronics. Details vary from team to team, but what we see here is typical of most F1 cars, indeed some of the components are standard (electronics) or lightly modified by the supplier (brakes).

Brake Caliper

Dominating the picture is the brake caliper. This is supplied by AP Racing and will be designed around Force India requirements, albeit based on their current iteration of an F1 Caliper.
F1 Bake calipers must have no more than six pistons, two pads and two mounting points. The material is restricted by an 80Gpa stiffness requirement; aluminum lithium is most commonly used.
AP have a unique design of caliper for many Formulii, with their RadiCal (Radical Caliper) design. This being the way the inner and outer sections join via the complex bridge structure, to make it as stiff as possible. We can see the caliper is bridged in two places and a radial brace is also used. Keeping his area open is important for cooling the brake disc.
Cooling is also behind the structure around the pistons, the cylinders the six pistons within are nearly completely exposed, with just some links to the calipers structure and internal passageway to route the brake fluid. This allows the most airflow around the cylinderpiston to keep them cool. The pistons themselves are made in titanium and have a series of radial holes machined into them to also keep heat from getting into the brake fluid.
We can see the brake line entering the caliper at the bottom, having been routed through the lower wishbone. At the top of the caliper are the two bleed nipples, these allow bubbles trapped within the system to float up and be removed for better brake feel.
The carbon panel on the outer section of the caliper is either an aero piece or some protection for the caliper when the wheels are slammed back on during pitstops.

Discs and Pads

F1 moved to Carbon discs and pads in the eighties, having moved straight from Cast iron discs. Strangely ceramic discs have not been a development seen at races. Rules limit the diameter and thickness of discs, but no other regulatory restrictions are placed on these parts.
Disc and pad material varies according to their manufacturer (Carbon Industrie & Hitco). It is also tuned for each race and even for each driver. Additionally cooling patterns will vary from track to track, For Force India in Melbourne we can see the high density drillings, with three small drillings across the disc. With Melbourne being heavy on braking the pads are also drilled in attempt to keep the brake system cool. Brakes and pads wear at an equal rate, so the few millimeters gap in between disc surface and drillings is all the wear these parts will see, before catastrophic failure. As wear increases with temperature there are sensors measuring the disc surface temperature and also wear sensors for both the inner and outer pads.

Electronics
To monitor all the functions on the front corner, there will be an array of sensors fitted to the parts. These are all linked back to the main SECU, rather than cabling for each sensor passing through the wishbones to the cars main wiring loom, there is a hub fitted to the upright that collects all he signals and passes them back via a single cable. This Hub Interface Unit (HIU) is a common part supplied by MES to all the teams. It has inputs from the aforementioned Pad wear and disc temperatures sensors, as well as two wheel speed sensor (two in case one fails), also a load cell for measuring pushrod (or pullrod) loads.

Wishbone mounting


Although the aluminum upright can barely be seen beneath the brake ducts, the key function of the upright is joins the hub to the suspension. F1 does not use adjustable suspension in the same way as many racecars. That is with threaded adjusters, but instead solid suspension links are mounted the hard points with shims. These shims are used to alter the camber, ride height, pushrod offset and castor.
Teams are no longer aligning the track rod for steering with the FTWB. So often the track rod needs a separate lower mounting point on the upright. When adjusting camber, a different FTWB shim will alter the steering toe angle, so an additional shim needs to be fitted to the track rod clevis t maintain toe angle.
In this picture, we can see the upper clevis that mounts the front top wishbone (FTWB) and track rod. Force India have done this with the VJM05, but have still been able to join the FTWB and track rod to the same clevis assembly. This way camber can be adjusted with a single shim, rather than separate but matched shims for separate clevises.
We can also see the extremely high front lower wishbone position (FLWB); it’s nearly at the front axle height. Having wishbones spaced further apart is better for reducing the loads fed through them, but aerodynamics demand a higher position. We can’t see the outboard joint with the upright; neither can we see the outer pushrod joint. It’s probably that FIF1 mount these mount to the upright in a set up called ‘pushrod on upright’ (POU), this helps eight transfer with steering angle in slow corners.

 

Mercedes: Are they blowing the Front or Rear wing?

Update on how it links to the front wing

Original article/

I’ve heard a lot of reporting about the Mercedes F-Duct stalling the rear wing and the likelihood of other teams already having a similar system.

I can see the logic in why people think that the DRS controlled duct blows the rear wing elements in a bid to reduce drag. I haven’t seen any evidence of this being the case; equally I can see several issues with this theory. The problem with the theories on the DRS duct stalling the rear wing are twofold; firstly the DRS is already cutting immensely, secondly the rules greatly restrict the ability to stall the rear wing. Back in to 2010 teams were using blown slots across the full width of the rear wing, these being used with perpendicular blowing to stall the wing or tangential blowing to act as an additional slot gap for more downforce. The rules introduced in 2011 aimed to prevent both of these types of slot.
To stall either the top rear wing or the beam (lower) rear wing, you need to blow a slot. In the post 2010 rules, slots are banned in any section of the rear wing (via a 100mm minimum radius rule); this ban applies to all three wing elements aside from the middle 15cm. So to use the DRS duct to blow a rear wing slot, all you’ll stall is the very centre section of wing. This area creates very little induced drag (most of that’s created at the wing tips), so stalling it will not improve top speed by much. Thus it will provide very little benefit.

It’s possible the DRS Duct could stall the flow around the sidepod, exhaust or diffuser. I’ve got no information on this, or a valid reason how this would benefit the aero. In my opinion the blowing to stall the front wing is still the most valid theory.  Pictures have merged today of Schumachers car lifted on a crane that shows the slot sunder the front wing. other pictures also show close ups of the rear of the car, do not show any slots in the top or beam wings.

Search on sutton images for pictures d12aus3468.jpg, d12aus3467.jpg, d12aus3465.jpg

I suspect the two ducts leading from the beam wing into the engine cover are part of the system.  Either taking the DRS-duct flow to the front wing directly, or by using the DRS-duct to switch the F-Duct.  I can;t find where the F-duct switch is sited, perhaps inside the rear wing, in which case the two beam wing ducts might be of different uses, one feeding high pressure airflow to the F-Duct and the other feeding the flow to the front wing.  As this is an evolving theory, I’ll post more on this system as we start to understand it better.

I’ve looked at the McLaren, Red Bull and Ferrari rear wings, as yet I can see no shaping to suggest a DRS-Duct is packaged inside the endplates.  There’s little doubt these teams must be working on similar solutions.  Although Red Bull and Lotus may probably not be developing this solution, as they are now querying the FIA on its legality LINK

We have now acceptance by the FIA that the DRS duct is legal, that Mercedes  are running this system and pictures show the duct emerging from the beam wing reaching forwards inside the engine cover. Presumably, to reach towards the front-end of the car. No doubt more information will soon emerge on these systems.

other links:

DRS open showing the duct open beneath the flap (via AMus)

LINK

Rear wing no sign of any slots in the middle 15cm

LINK

Mercedes: F-Duct Front Wing operated by the Rear Wing DRS

Update on how it links to the Front wing

Update

Something often said of banned developments in F1, is that once understood no solution can be unlearnt. So while the FIA fights to ban technologies that they feel aren’t suited to F1, the teams will always try to apply that solution in a different way.
McLaren understood how to stall a wing by blowing a slot perpendicular the wings surface. This knowledge lead to the F-duct in 2010, as you will recall the FIA moved to ban slots in the rear wing and direct driver interaction with the cars aero. But the knowledge of blown slots to stall wings has remained and it’s been Mercedes who have been busy trying to apply it in other ways. This culminated with the tests of an F-Duct front wing late last year. Rumours continue to fly about the teams use of the F-Duct front wing (FDFW) in 2012. I understand the 2012 Mercedes AMG W03 does have an F-Duct front wing and this is operated by the rear wings DRS. Based on information I have from the sources around the team, and from looking at the cars performance and construction mean I can speculate how and why Mercedes might be using the FDFW.

As detailed in two articles last year, Mercedes are believed to have run blown slots under the front wing to stall the wing at higher speeds. Three reasons came up as to why this would be used; reducing drag, managing wing ride height and managing the cars aero balance. With nothing official being said by Mercedes, we were left unsure as to exactly why a passive FDFW would benefit the car.
http://scarbsf1.wordpress.com/2011/10/21/mercedes-f-duct-front-wing/

http://scarbsf1.wordpress.com/2011/10/24/update-mercedes-f-duct-front-wing/

Some observations from the Mercedes team last year might aid us in putting a picture together of how the 2012 solution might benefit. Mercedes were the first team to really exploit more of the open DRS effect and use a short chord flap. The open DRS boosted Mercedes top speed and could be used through the lap in qualifying. Despite this benefit the teams did struggle in qualifying, their race performances latterly became better than qualifying suggested. It was clear for Michael Schumacher at Least, that the cars handling wasn’t ideal and the team sought to resolve the cars nervousness.
Bearing these points in mind, the potential benefits of a FDFW become more apparent. Mercedes need more qualifying pace; they can exploit their DRS more frequently during qualifying, but in higher speed turns the cars lacks the balance for the drivers to fully commit through the turn.
If they can cure these issues, then they will further up in qualifying and able to take the fight to the leading teams. I now believe the FDFW works to manage the cars balance in high speed turns when the DRS is activated. As DRS reduces both rear drag and downforce, the car becomes unbalanced in downforce front-to-rear. In other words pointy or oversteering. Which in high speed turns in qualifying is hard to handle. At higher speeds even with DRS reducing rear wing downforce, the car has enough downforce to make it around corner, the problem is how to make the car more balanced front-to-rear when DRS is activated.
The FDFW we saw last year appeared to be passive, this uses nothing other than airspeed to trigger the slot to blow enough to stall the front wing. If matched to the speed DRS would be used at (in qualifying), the passive FDFW would help balance the car, by reducing front downforce to match that of the rear. However the front wing would always stall at these speeds, whether DRS was in use or not, so outside of qualifying the wing would stall and the car would understeer. With Parc Fermé rules in force, the team cannot change the FDFW between qualifying and the race.
Another issue with the passive FDFW, is that under braking as air speed reduced, the wing would need time to start working again. But this early phase of braking is just when the driver needs the most downforce. What the FDFW ideally needs is a method to link its activation to that of DRS, in other words an active F-duct.
As we’ve already mentioned, driver activation is not allowed, as are any other moving parts to directly alter the airflow. This brings up the Designers favourite interpretation in the rule book, primary and secondary purpose. Any part on the car can be for a primary purpose; sometimes any secondary purpose is banned or restricted. However in most cases the rules are vague and Designers are free to find secondary uses for a solution on the car. Examples of this are the cooling fans on the Brabham Fan car, the engine blowing off throttle for blown diffusers or brake torque altering ride height on the Lotus Reactive Ride Height system. In each case the first element was legal as its primary purpose was as stated, but a secondary purpose was able to be exploited.

The DRS rules are quite clear that the flap must not be shaped to allow other aerodynamic benefits. In fact this wording affects only a portion of the flap and additionally the endplate is excluded from this wording. If the team could find a way to blow into the front wing a duct when DRS is activated, then the FDFW could work synchronously with the DRS.

The hingeplate the flap mounts to, closes a hole when DRS is closed. When DRS is open the duct is revealed and the F-duct stalls the front wing

I believe Mercedes have found a way, by creating a duct through the endplate. When DRS is closed, the flap and the plate it attaches to is in a nearly vertical position. When DRS opens, the area the flap initially covered is exposed. If this area featured an opening that lead into a duct inside the endplate, when DRS opened the high pressure above the wing would force flow through the duct. With this duct then routed through the car to the front wing, when DRS is open the FDFW would be blown and stall in unison with the rear wing. Clearly when DRS closes the duct would be closed off and the duct would stop blowing the FDFW, restoring front and rear downforce.

When DRS is open, the duct passes into the beam wing and through the car. Eventually reaching the front wing slot to stall the wing.

Some evidence around the rear wing of the W03 shows this could be possible. We have to be careful to pinpoint every feature on the rear wing as being FDFW related as the DRS mechanism is hidden inside the endplate as well. Some access panels on the wing could be for DRS, FDFW or other purposes, some might be for both. In my research I’ve yet to see a clear high resolution shot of the Mercedes with DRS open, this is unusual as most other teams have been seen with the DRS in effect. Equally clear pictures of the inside of the endplate, where the flap meets the endplate, are in short supply. With this lack of material I can propose a solution, although the actual parts may diffuser is location and appearance. Its expected at this weekend Australian GP the rear wing duct will be exposed as the car uses DRS on the straights. We will need photographers with a big lens and steady hand to catch sharp pictures of the inside face of the endplate, when DRS is activated.


Evidence of the duct can be seen on the car, when the car is not moving. Clearly the W03 rear wing endplate is quite thick, an access panel that houses the DRS actuator is outboard of the flapendplate intersection, plus there is another panel in line with the beams wings intersection with the endplate. I’d suggest the duct is opened by the flap and hinge plate, the duct then routes through the double skinned endplate down into the beam wing. This then exits through the duct that mounts the beam wing to the gearbox. There’s a tortuous route for the duct through the car to reach the front wing, but this isn’t that dissimilar to the 2010 F-Duct routing. As with McLaren in 2010, the trick is to design the duct into the car at an early stage to minimise losses through the ductwork. This usefully makes it harder, but not impossible to copy. To copy this set up the monocoque needs to be altered and the nose cone needs the apertures into the front wing mounting pylons to feed the airflow into the front wing itself. This requires time to redesign and potentially re-crash test any changes.
But, can this set up be legal? The act of stalling a front wing through a blown slot is legal, although F-ducts are banned, it’s only via the slot in the rear wing that this was achieved. Direct driver intervention is banned, but the driver is allowed to operate the DRS, so any secondary aerodynamic effect of that is not prohibited in the rules.
Although the rules allow this, it’s possible the FIA could issue a Technical Directive on the matter, that any overt secondary effect of using DRS is not allowed and the whole solution could be banned in a stroke.

With a tight and competitive season in prospect qualifying performance will be critical. Notwithstanding the potential structural work to allow the duct to pass through the car, the DRS activated F-duct Front wing is an attractive option for the other leading teams.

Analysis: Force India VJM05

 

Car: Force India – Mercedes VJM05
Concept
In common with other teams Force India have followed an evolutionary path for their car since the aero rules changed in 2009. Despite having a strong year in 2011, the team had already decided to follow a new car concept for 2012. Thus the car we see has little in common with the outgoing VJM04, starting from the concept of a new front wing and a new nose above it. Then the sidepod philosophy has been switched to the Toro Rosso style of deeply undercut (or double floor) sidepods.

Layout
By using the entire McLaren Mercedes powertrain, the car is largely fixed in layout.

Nose

Even without the 2012 nose rules, it looks like FIF1 were going to follow a new direction in their nose design. Recent cars sported a narrow high nose, with a bump beneath it to create some downforce from the neutral centre section of wing. The team also tested a McLaren style under-nose snowplough in 2011, but weren’t able to get it to work for them. So they have opted for quite a wide and rounded nose section, the tip being formed into hammerhead shape by the two FOM cameras.


The nose joins the chassis with quite a smooth transition; the front section of chassis has a slight “V” shape to aid the step between the nose and chassis. When looking at the front bulkhead, it’s possible to see how the concave shape created on top of the chassis has to be matched with similar convex section at the bottom of the chassis in order to meet the regulations on minimum chassis cross section.
Currently the wing mounting pylons are extended rearwards, but this is an area FIF1 tend to alter between circuits, so we may see some different iterations of this vaned pylon,

 

Front wing

As the starting point for the new aero concept, the front wing follows the modern F1 pattern, the three element wing is formed from a split main plane and a flap trailing it. The outer section of flap fixed and along with the tips of the main plane curls down to meet the endplate. As is common for this style of wing the flap gains an extra slot in the upper corner to aid flow. The endplate is formed by a vane help direct the airflow outboard of the front wheel. Also in keeping with the theme are the cascades which are mounted to the endplate-vane, there being one larger and one smaller winglet above the main wing.

 

Roll hoop

The 2011 car switched to a blade style roll hoop on the grounds of less weight and better airflow to the rear wing. This year the design has switched back to a deeply undercut shape, with the metal inner structure exposed beneath appearing as the four supporting struts for the engine inlet snorkel. Technical Director Andy Green explained that they were able to make this structure even lighter than the blade design. Adding that with raised nose and sidepods, losing weight high up kept the cars Centre of Gravity nice and low.

 

SidepodsCooling

Along with the nose assembly, the sidepods are next biggest departure for the team. By keeping the radiators and sidepod volume high and narrow, the resulting undercut in the sidepods flank creates the double floor effect and allows more airflow to pass directly over the top of the diffuser. Unlike Toro Rosso’s rounded interpretation of the undercut sidepod, FIF1’s has much flatter sides, particularly in the coke bottle region near the exhausts; the sidepod shape is particularly slim.

The entire sidepod is formed form a single moulding, when removed the entire cooling set up and side impact spars are exposed. This should make altering the sidepods profile during much easier.
Cooling for the radiators is via the Red Bull style tail funnel, or ‘Tulip’ exits as Green describes it.

Exhaust

Force India’s exhaust system is tucked in close to the cars centreline towards the rear of the legality box. I suggested to Green that this was neutral position and probably did not produce the downforce of other systems. Green suggested the “looks may be deceiving”, but did concede that it was less sensitive placement in order to get the best performance around a lap rather than the maximum possible downforce. As with most teams other systems will be tried, but this set up will probably make it to the opening races. The exhaust plume plays over the tail of the engine cover and over the gearbox box. With the rear wing gaining a 15cm central winglet, the idea is probably to blow this central area for a little bit of extra downforce. The engine cover has a unpainted heat shielded that rises quite high, so the exhaust plume may be diffused over the cover to spread itself event between the beam wing and winglet.

Rear suspension
By using the McLaren gearbox Force India are forced to use similar in board wishbone mounts and the same pullrod mechanism. The top rear wishbone appears to be mounted lower than last year, no longer is the rear leg aligned with the wishbone, suggesting one of two things, the gearbox itself is a lower design andor the amount of rake the car now runs warrants a different wishbone position to allow the higher rear ride height.

Diffuserrear impact structure

Again somewhat tied to the same mounting points of the McLaren gearbox, the rear impact structures sits low and exposed the beam wing above and the diffuser below. The diffuser uses the maximum width to expand laterally, such that the sides of the diffuser cannot sport a gurney. There is a gurney mounts along the top edge of the diffuser, with a slotted section between the rear wing endplates. As is common, a tall plategurney is mounted between the diffuser and the crash structure above.

Looking from the front of the diffuser the undercut sidepods and crash structure allow a clear flow of air into the boat tail section of diffuser; this leaves the exposed and probably gains a slight blow effect from the better airflow. This aids through the awkward centre section of diffuser. As yet the rear wing endplate does not extend downwards behind the diffuser, but is attached to the diffuser with two vane-like mounts.

Gearbox
As already mentioned the gearbox is supplied by McLaren, this is a carbon fibre cased unit and features pullrod operation of the springs and dampers. Last year the springs were mounted vertically and the dampers mounted inside the casing. The only external element was the anti roll bar which sat atop the casing, with drop links down to the low mounted rockers.

Features

As with Last year, FIF1 have BBS wheels with integrated fairings. These are all that’s allowed in terms of non structural spoke son the wheel, since the ban on the wheel fairings seen in 2009. They aid the airflow around the wheel and in doing so may aid brake cooling and/or general aerodynamics.

KERS
Again Force India uses the Mercedes AMG KERS, similar in design to last year, the combined battery Pack and power electronics unit sits below the fuel tank.

Engine

As with all teams the engine specifications are frozen, only the mappings to accommodate the new regulations on on-throttle blown engine maps are allowed. The engine manufacturers suggest this will affect the engines drivability, as these maps pre-existed blow diffusers, and were used to smooth the power delivery and harvesting of KERS energy during braking.

Analysis: Sauber C31

Car: Sauber – Ferrari C31
Concept
On first sight the Sauber appears to be a well developed conventional package. Indeed in most areas the Sauber appears unremarkable, but this belies the wealth of small details around the car. In particular the cars aerodynamics make it quite progressive in comparison to its midfield rivals.
Also setting Sauber apart from almost every other team is its technical Structure. After the team had transitioned from BMW back to Sauber, long time technical director Willi Rampf retired and James key joined the team from Force India. However Key departed the team on the eve of the cars launch this year and its Sauber’s intention to continue without this central role. Instead the Heads of Department will work together to manage the technical side of the team. The two key people involved in this are Chief Designer Matt Morris and Head of Aero Willem Toet. This is certainly a unique arrangement, while I can imagine this working short term as the people involved are so experienced. They will be able to manage tactical decisions, but part of the technical directors role is set out the strategy and plan for the team in the years ahead. This is harder as the budget and resources need to be apportioned centrally to each department. Hopefully the team will resolve the management structure before they lose direction.

Nose

Sauber’s interpretation of the 2012 nose is unique; the team have followed the low nose and high chassis route, but like Red Bull have sought to offset the problems of keeping the airflow attached over the step in the nose. The removable nose cone has a rectangular cross section, while the front bulkhead has a slight “V” section. Where these two sections meet there is a corresponding gap behind the nose cone formed by the concave surface on the top of the chassis.

The rear facing nose slot is clearly visible here in a photo taken by Aero Student Sriram Chandra

Many observers immediately likened this to the Ferrari 2008 nose hole, but such a solution would be illegal with the post 2009 nose rules, that demand the ‘nose’ is an open section, not to mention the neutral centre front wing section would not make much use of such a nose hole.

A duct passes from below the nose to point rearwards and blow over the top of the chassis

I believe the step is a rear facing blown slot, to help the airflow attach to the flat chassis top. Inside the nose cone, there is a duct that takes high pressure from a slot underneath the nose and passes it up to the rear facing slot.

This creates a shear layer between the flow over the nose and that formed above the chassis. With this set up, the nose and chassis can be nearer horizontal and squarer in section, without the issue of flow separation; this allows the maximum amount of space beneath the raised chassis for airflow to reach the turning vanes and the underfloors lower leading edge.

This image shows the duct work inside the nose, captured by Aero Student Sriram Chandra - Copyright

In doing this Sauber have been very clever with their reading of the rules. The nose must be formed of an open section, and then the only openings in that are for the driver cooling hole, which must be for the primary purpose of cooling the driver. Sauber’s nose cone can be considered an open section; as the lower inlet slot and the upper outlet slot are both formed in the plane between the nose and chassis, thus the nose has no extra holes and is legal.
Curiously the normal driver cooling hole has not been present on the car during testing.
The nose cone itself follows Sauber 2011 pattern in that the nose is very long and features a high and wide nose tip. Flow spilling of the noses top surface is controlled by a small fin running horizontally along the nose. This aligns with the front upper wishbone. With the noses upper surface being flat, the underside slopes down quite steeply aft of the front wing mounting pylons. This set up collects a lot of air beneath the nose tip and directs it towards the under nose vane set up. These are pair of curved vanes, each split into two sections, mounted below the front suspension. Coincidentally a design path Red Bull followed in the middle of last year

Front wing
Aside from the need to meet the doubling of the wing deflection test, the front wing appears to be based around the late 2011 spec front wing.  Sauber 2011 front wing

Roll hoop

Although it may not appear so at first glance, the Sauber roll hoop is heavily undercut. The inlet snorkel is flanked by four supports; these are part of the metal inner roll hoop structure. The snorkel does not merge with the chassis until the rear pair of these supports, making over half of the roll structures length undercut. This aids airflow over the top body and to the rear wing.

SidepodsCooling

Traditionally Sauber have gone for quite extreme shaped sidepods, this year the undercut does not appear as large, as the inlets are now much smaller. The “P” shaped inlets being very small and mounted inboard, leaving a large between them and the sidepod vanes. The sidepods then sweep in and downwards, with their lower edges tapering out towards the floor. As is common this year cooling is managed by the radiators directing their outflow towards the cars centre and then around the aerodynamically shaped heat shields around the engine, to exit out the back of the engine cover. In Sauber’s case, there are two main exit areas. Firstly pair of tall vents at the tail of the sidepod and then a tail funnel. Although this is not a Red Bull style oval tail funnel, but instead a pair of vertical slots in the rear most section of the engine cover. Albeit an oversized Red Bull style funnel was tried in testing, presumably for the upcoming hot weather races.

Exhaust

By having point upwards at no less than ten degrees the Sauber exhaust plume should look like this

The launch specification sidepod was soon replaced with a design aimed at a more beneficial use of the exhaust gasses. The sidepods sported a top surface that sweeps down over the exhaust outlets and merges with the floor.

But the Sauber sidepod shape creates a downwash (yellow) over the exhaust outlet

This creates a downwash effect over the exhaust outlets and the merging of the exhaust outlet to the sidepod surface induces a coanda effect to make the exhaust flow downwards, despite the upward angle of the exhaust outlet.

there's a host of detail in this photo by Sriram Chandra, its clear the flow from the exhaust, aided by the fence on the floor is directed to the side of the diffuser. Note the cooling slots and the aerofoil section ahead of the tyre.

This exhaust flow is aimed at the floor between the rear wheels and the diffuser, to achieve the same but less powerful effect of the 2011 blown diffuser.

The resulting effect is the exhaust is redirected towards the floor

To aid the downwash effect created by the sidepods shape, the team have added a new vane, placed laterally across the sidepod. This turns the airflows downwards to increase the pressure over the exhaust jet, which will help it to be redirected towards the floor.

These vanes over the sidepods help create a stronger downwash effect. COPYRIGHT OctanePhotos.co.uk

This vane is similar to the pod wings that first appeared on the Jordan cars on Hungary 2004. Under the post 2009 aero rules this bodywork is legal because it sits 450mm forward of the rear of the cockpit template. Bodywork this far forward is exempt from the same restrictions the main sidepods must conform to.

Rear suspension

Note the arched beam wing mount over the gearbox. COPYRIGHT OctanePhotos.co.uk

Sauber use the Ferrari gearbox, but their aerodynamic packaging of the bodywork around the gearbox, make the gear case is more visible. It’s possible to see how Ferrari have followed Williams practice to lower the top of the case to a point below the top wishbone mounting. This wishbone mounts to pylons projecting up from the gear case. This repackaging was partly possible through the repositioning of the springsdampers to low down on the gearbox with the use of pull rod activation. The rear of the upper wishbone mountings also forms a mounting for the beam wing; this large structure emerges from the gearbox and hooks around to mount the top of the beam wing. This looks like a duct, but it’s hard to see how flow could be effectively ducted to the top of the gearbox and then out of the beam wing. Although the rules do have a loophole that allows a small 15cm slot in the middle of the wing, which might help the airflow up out of the centre of the diffuser. But, in my opinion this isn’t a duct, as there’s no evidence of the outlet in the beam wing.

Diffuserrear impact structure

Diffuser and cooling detail. COPYRIGHT: OctancePhotos.co.uk

As seems to be the trend this year, the rear impact structure curves in between the diffuser and beam wing, this allows a clear flow of air to both devices. In Sauber’s case the impact structure is very slim, although the tail lamp section has add-on bodywork to make it much larger and rounder than the rest of the structure.
The diffuser is a straightforward interpretation of the rules. The boat tail section of diffuser is exposed below the crash structure; this allows the downwash airflow over the sidepods to enter the specially shaped starter motor hole and also to pass upwards over the large curved flap in the centre of the diffuser. Either side of this flap, the trailing edge of the diffuser, between the rear wing mounts, sports a smaller aerofoil section flap. All of these trailing edge devices help to reduce pressure behind the diffuser, this helps draw more flow through the diffuser for more downforce. Unlike last year the current rear wing endplates do not extend behind the diffuser to form vanes effectively extending the diffuser lengthwise.

Features
In order to package the very narrow sidepod fronts the car sports a single Side impact spar mounted in the upper front volume of the sidepod. Typically teams use two spars here, one smaller leading spar and a larger spar trailing that. Impressively Sauber seem to be able to get the crash protection and the aerodynamics shape from a single stout spar.

Saubers side impact protection - Picture via Auto Motor und Sport

Having used a unique hollow spoke wheel from OZ for several seasons, this year’s wheels are a revised version, going from five spokes to seven and the wheel incorporate fixings for the rim fairings.

Powertrain
Sauber continue to use the Ferrari powertrain, this consists of the Engine, KERS and gearbox.

A small introduction to Sriram Chandra:
Sriram contacted me with pictures and information, he’d independantly gathered at the Barcelona test. Amongst these was the first explanation of how the Sauber nose duct works.
Sriram is from India, where he completed his undergraduate degree in Electronics, but he realized he really wanted to specialize in Aerodynamics and especially F1. So he has moved to Europe and has since completed a Master’s degree in Aerospace engineering from ENSAE, Toulouse, France. He did his final internship in the Future Projects Office designing aerodynamic and fuel efficient aircraft.
Until he finds a break in F1, he is working in Toulouse for Altran, focusing on the Handling qualities of the A320 aircraft.

Launch Analysis: Red Bull RB8

Car: Red Bull Racing – Renault RB8
Concept
There’s not a lot left to be said about Red Bulls incredible run of pace since 2009. Despite not winning the 2009 championship, the RB5 rewrote the text book on F1 design. Since then, the two subsequent cars have both pioneered new ideas and followed a few others. Each time the car has been ever more dominant. If the team have an achilles heel, then its reliability, split between the; chassis, the engine and KERS. With pace in hand, the team do not need to make bold steps with the cars design, as they need to maintain reliability. With the RB8 taking risks was not on the agenda, the evolutionary car uses detail design and a small few unique features to keep a step ahead on pace.

Layout
With the evolutionary concept, no obvious changes have been made with the cars layout.  The retains a steeply raked attitude, Newey mentioned at the launch that the loss of EBDs will affect their ability to angle the car into the nose down attitude.  But the evidence of the car on-track suggests that obtaining laptime with a lot of rake is not an issue.

Nose

As with many teams, the nose grabbed most attention when the car was launched. But rather than the shock from the awkward looking 2012 noses, there was curiosity over the letter box slots in the nose. There was one more visible slot on the upper section of nose and one less visible one below it.
Rumours circulate that the upper slot is used for some form of F-duct or (non driver) cooling. In my opinion, it is a simple solution to keep the airflow attached over the step in the nose.
Faced with the 2012 rules, Red Bull took the obvious route of a raised chassis and nose. The car now eschews the “V” shape nose and chassis, so the top of the chassis and nose are flat. With the rules forcing a 75mm step between these two surfaces, the airflow doesn’t want to run along the nose and then step up without separating from the chassis top.


So the team has sought to offset some of problems with this design. Red Bulls solution is to create an aero effect to aid the transition between nose and chassis. This starts with the letterbox inlet, which as Newey explained at the launch is ‘primarily’ for driver cooling. The rules permit one opening to the nosecone for the purposes of driver cooling. Normally this is an oval hole in the tip of the nose. But on the RB8 this is a 25cm wide narrow slot and probably only 5mm or so high. As Newey admits, some of this airflow does pass into the cockpit to cool the driver. But what Newey would probably describe as the secondary effect of the slot, is to allow for the rounded leading edge above the inlet. When airflows runs up the nose it hits this leading edge and curls under it, forming a bubble of recirculating flow. This rotating cylinder of airflow helps to keep the upper airflow aligned and attached to the flat top of the chassis. This is a simple and copyable solution. I believe this would work with or without the slot. As the upper section of nose cone bodywork is largely a cosmetic panel and not part of the crash structure. It could be changed without re-crash testing. Sauber have found a similar solution on their nose.
Below the nose there is yet another slot. This in line with the bottom of the chassis and runs the full width of the nose. While I can offer some explanation for the upper slot, this lower one is more of a mystery. Again its use has been rumoured as KERS cooling or blowing the floor, whatever its function I believe it may have been on the car last year. Although the slot was not externally visible on the 2011 car, when the nose is removed the slot was evident below the front bulkhead (pictured below). Presumably this was fed from the driver cooling inlet, which was placed on the nose tip on the RB7.

Clearly the duct formed is very small, which limits it use. I doubt it’s to cool KERS, as the KERS is mounted towards the rear of the car and the small duct would not adequately cool batteries or the like. Its position does suggest the flow could pass down to the splitter, so some clever use for blowing or loading the splitter could be within the realms of possibility. More likely is the use to cool the electronics or power steering rack, which are sited much closer to the duct and would require a smaller amount of cooling air.


One detail of the RB8 and to an extent with the RB7 was the advantage it takes of the radius that is allowed to be applied to the edges of the chassis. This 25mm radius is rounded over to keep the cross section of the nose as small as possible. Within the minimum 300mm x 275mm rectangle the nose must fit into. The top corners of the chassis are clearly a near 3/4 cylindrical section.

Front wing

In common with their rivals the front wing is a derivative of the 2011 wing. Albeit restructured to meet the newly doubled deflection test. Red Bull were late to the endplate-less wing design. Although they created slot in the endplate over the past few years, it’s relatively recently they upper section of endplate has been added on to the tips of the wings, rather than use a conventional separate endplate.

Behind the wing the turning vanes continue the mid 2011 ‘curled’ design.  The vanes hang from below the chassis and are larger this year and sport a split in the middle.

One odd feature visible on the front wing is a small section of removable bodywork in the neutral centre section of wing.  I’ve idea of the purpose of the purpose of this panel, perhaps its to access a sensor or allow ballast to be fitted?

Roll hoop

While retaining the same engine and with the general evolutionary theme of the car, the roll hoop area is indistinguishable from the 2011 car. No doubt there are structural changes under the skin, but these aren’t visually apparent or announced by the team.

SidepodsCooling

Moving onto the sidepods, the general concept of the sidepod shape is also similar to 2011. Slightly triangular inlets feed the radiators, which are mounted horizontal across the car and tilted upwards towards the front. Their flow passes up and around the heat shielding on the engineairbox and most of it exits through the tail funnel. In cross section the sidepods retain the outwardly-tapered ‘jelly mould’ appearance, with only the area under the inlet being undercut. Again as with the RB7 the sidepods merge seamlessly into the gearbox fairing.

Exhaust

Traditionally Red Bull have switched their launch exhausts to their Melbourne spec in the last days of testing. It’s been mentioned by the team that there is a new exhaust system coming. This is no doubt partly the reason for the team delaying the last test and having a near private test (shared with Ferrari) on the last day.
The launch spec exhaust places the outlet pipe inboard and relatively low. This bows in line with the plane of the rear upper wishbone. The bodywork over the gearbox and rear crash structure is curved and creates a neat channel for the flow to pass through. This then sees the exhaust plume pass under the beam wing. In this position the heat is affecting the upper wishbone, even at its launch, the car sported heat shielding over the wishbones. During testing this protection has grown, albeit with temporary looking solutions, suggesting the new exhaust system will not blow in this area.

Rear suspension

The RB8 has a high mounted upper rear wishbone, which places its rear leg in line with the beam wing. In keeping with the recent RBx cars, the gearbox sports a tall spine that functions as the wishbone and beam wing mounting. Although this shaping is partly hidden by the way it merges into the tail funnel.


With such a high top wishbone the lower rear wishbone is able to mount higher too. This wishbone is now effectively at the same height as the driveshaft. Not only is it inline, but the wishbone forms an shroud ahead of the driveshaft to offset the negative aerodynamic effect of the rotating shaft, in the critical area above the diffuser (Note: Fully shrouded driveshafts are banned). While this all appears to be logical, the lower wishbone is not a splayed as the upper wishbone. Having the inboard mountings very close to each other is not so good from a loading perspective, so there must be a reason to make the wishbone in such a compromised shape. Again this might suggest the new exhaust needs the wishbone in a certain position to work effectively.
Diffuserrear impact structure
With the tapered sidepod, the Red Bull encloses the centre of the diffuser inside the gearbox fairing. Other teams leave this exposed beneath the crash structure, to allow flow to pass through and out of the starter motor hole. Last year Red Bull introduced a duct in the floor to send flow directly to the starter motor hole. This year the duct appears to have gone and doesn’t look like it’s been replaced with something. In line with the gearbox and the current exhaust set up, the impact structures forms a spine along part of its length. Once the beam wing is mounted to the spine, the crash structures returns to a normal rectangular cross section and sweeps upwards towards the tail light. This spine format keeps the gearbox and suspension mountings nice and stiff, plus it mounts the beam wing with very little obstruction to it slower surface.

Gearbox
Red bull have used pull rod suspension since 2009 and introduced their carbon fibre gear case in the middle of that year. Keeping the construction and general shape, the gearbox set up appears only have detail revisions over this period.

Aerodynamic features

Every team has exploited the 12cm of space inboard of the rear wheel for aerodynamic bodywork. Red Bull have added particularly large upper vane to the brake ducts this year. Above the top wishbone mounting two large flap can be seen.

The rear wing also exploits a small window that allows bodywork, this makes it possible for Red Bull to fit vanes placed behind the diffuser, to aid the expansion of the flow out of the diffuser.

KERS
It was a bold decision in 2011 for Red Bull to develop their own Battery system for the Renault Marelli KERS. Not wanting to sacrifice wheelbase and fuel tank volume with under-tank mounted batteries, instead Newey mounted the batteries near the gearbox. In fact three batteries packs were fitted, one larger pack either side of the gearbox and a small array inside the top of the gearbox case. Exposed to more heat and vibration the KERS caused problems throughout 2011 and led to the driver having it unavailable at critical points in qualifying and races. I understand the battery positions remain for this year. It was never clear if Red Bull actually had a full power KERS in 2011. The rumours persisted of a Mini-KERS, suggesting the system discharged nearer 40Kw, rather than the maximum allowable 60Kw.

Engine
Announced in mid 2011, Red Bull are now the official ‘factory’ team for Renault. With the success of the team and the Renault F1 team being rebadged to Lotus, This allows Red bull to take a more direct involvement in developing the RS27 engine and the exhaust mappings to maximise what is allowable in the rules.

Launch Analysis: Ferrari F2012

Car: Ferrari F2012
Concept
Having followed a very similar concept since the 2009 F60, Ferrari found in 2011 that the conservative route was not making up the ground to their rivals. The F150 was a fast car, but lacked that final ounce of pace to beat the Red Bulls and McLarens. This was exacerbated by the car being easy on its tyres, to the point where it had tyre warm up issues. This showed itself in qualifying were the car would not make the most of a tyre around a single lap and also in cooler weather, or where the harder Pirelli tyre was used. The team recruited Pat Fry in a major reshuffle of engineering staff. Fry spent the year assessing Ferrari problems and set about a recruitment programme of new staff and a more adventurous design programme. The resulting car is clearly very different from its predecessors.
Externally very little remains the same on the new car, it does perhaps shares Ferraris favour for a long wheelbase and clearly is set up to run a fairly steep rake angle. But only the front wing, which is derived from the late 2011 wing appears to be carried over. Even this detail was a development in preparation for 2012, Fry leading the team to follow Red Bulls format of front wing in both shape and aero elasticity.

Layout
With a similar wheelbase, the revised seating position is perhaps the only change to the cars layout. The seating position was altered for Fernando Alonso last year and has been altered once more for a lower position.

Nose

Of all the 2012 front ends Ferrari has one of the most striking, the nose being very wide and square in cross section. The width is part of philosophy to use the extended wing mounting pylons, as a pair of turning vanes cascaded with the normal undernose turning vanes. By making the nose as wide as possible within the space allowed within the regulations, more undernose surface can be used to accelerate air through the duct formed by the nose and vanes. As a result the edges are tightly radiussed and cannot be rounded as with other teams. The aesthetics of the nose being also worse for the rectangular cross section front bulkhead. Ferrari opting not to make a “V” shape of the bulkhead, in order to make the area under the raised chassis uncluttered to make the vane set up work most effectively.


The flow through this vane set up starts with the wing mounting pylons, these are wide spaced at their leading edges and they then converge to end inboard of the main turning vanes. The main turning vanes then pick up the flow accelerating between the pylons and sweep out to direct the flow towards the lower leading edge of the underfloor.
Curiously Ferrari has yet to fit a driver cooling vent into the nose. This hole is not mandatory and clearly not a requirement for a chilly Spanish pre season test.

Front wing
As previously mentioned, the front wing is a derivative of the late 2011 wing. This was extensively detailed in a previous post. The wing is a three element set up, the main plane being slotted to create the leading two elements, and then the flap trails this. An extra slot in the down-turned corner of the flap helps keep flow attached in the steepest section of wing. The footplate is formed by the wing curving down on itself, while the upper section of endplate is a separate vane, albeit joined along a lot of its length to the foot plate. Front wings are now subject to a doubling of the deflection test used by the FIA 2011. So far the Ferrari wing has not exhibited the flutter seen last year, which is not to say it is not flexing.

Front Suspension

A mention of front suspension in the cars launch analysis will be unique to Ferrari this year, as they have revisited an old direction with its layout. Every other car for well over ten years has had pushrod front suspension, but Ferrari has revived the pullrod set up for the front of the car.


This effectively turns the pushrod set up upside down, now the rod passes down from the upper wishbone and connects with the rocker, which is now mounted at the bottom of the chassis. According to Fry, this set up is a little lighter and has a slightly lower Centre of Gravity. These gains alone will not pay for the systems inclusion on the car, so the team claim to have found an aero benefit. The pullrod can be thinner, but the real gain is the pullrod is mounted near horizontal across the front suspension. This places it in line with the upwash from the front wing. Just as with the wishbones, its profile can be subtly altered within the rules to help control the wake from the wing and improve the airflow over the rear of the car. Despite appearances the pullrod is as effective in moving the rocker for a given wheel travel as a pushrod. The important factor is the angle between the rod and the wishbone is connected to, rather than the rods angle to the chassis. I’ll explain a lot more pull rod suspension in a subsequent article.


Roll hoop

Although not a performance differentiator, the new roll hoop is very different concept to that seen in previous Ferraris. A far curvier pair of inlets are formed by the structure, this shaping being at odds with the ungainly nose. It is strange Ferrari have not undercut this area and exposed the structure supporting the roll hoop, which is the common practice to achieve more airflow to the rear wing. The main inlet feeds the engines airbox, while the smaller inlet piggy-backed behind it, most likely feeds the gearbox and hydraulic oil coolers mounted above the gearbox. The lifting point for the trackside cranes is formed by beneath the main inlet and enclosed by a simple bar connecting it to the top of the chassis.

SidepodsCooling

It’s perhaps the sidepods that are the big performance area for the car this year.
Starting at their leading edge, the car sports a new format Side Impact Spar (SIPS) design inside the bodywork. Since 2009 Ferrari had a staggered SIPS arrangement, with a narrower spar sat ahead of a wider spar, creating the distinctive peaked sidepod inlet. Now it spears a single spar spans the sidepod and protrudes through to form the mount for the sidepod vane. This allows the spar to be wider, which creates an easier job to absorb the impact. Viewed from above the sidepod inlet lean inwards. This makes them more efficient at meeting the diverging flow that passes around chassis to enter the sidepod.


Much smaller and far more undercut, the sidepods now feature radiators mounted upright and splaying outwards from the rear of the car. Their new placement allows the flow through the cores to be directed outboard, rather than in towards the central tail funnel. This heated flow from the radiators passes out through the downswept chimney-fairings that differentiate the car from its rivals. This design keeps the centre of the car as slim as possible, with there being no tail funnel to obstruct the rear wing. Airflow passing through the undercut in the sidepod, still enters a coke bottle shape below the chimney-fairings and is passed over the diffuser. But these chimney-fairings also have a more important secondary use, for housing the exhaust outlets.


Additional cooling outlet area is provided in the tail of the sidepods, in between the rounded end of the chimney-fairings and the gearbox fairing. This gearbox fairing is nearly round in cross section also forms an outlet for hot air to exit from the engine bay.

Exhausts
With floor level exhausts no longer allowed, the teams have had to find different ways to make use of the powerful exhaust plume. Most teams have directed it over the sidepods towards the centre of the beam wing, but Ferrari have purposely placed the exits as far outboard as allowed (on the launch spec car at least). When viewed from above its clear these are aimed outboard of the rear wing endplate.


Sat inside the downswept chimney-fairings, the exhaust at first might be thought to be pointing downwards. But the rules state the exhaust outlets have to point upwards by at least ten degrees. Although not visible inside the chimney-fairings, the last 10cm of exhaust do indeed point upwards.


But the cleverly the down sweep of the chimney-fairings creates a downwash effect over the exhaust plume and this directs the combined flow downwards between the rear brake ducts and rear wing endplate. This set up will potentially reach the floor and act to seal the diffuser from the ground as with the 2011 EBD.

In testing the set up has gone through several iterations, firstly the exhausts exits were in line with the end of the chimney-fairings, but soon the exhaust tail pipes were shortened and the chimney-fairings above had to be cut back to maintain legality and also the allow the downwash flow to reach the shorter tailpipe.


At the Barcelona test the exhausts were again altered, this time being brought further inboard, approximately in line with the channel formed between the chimney-fairings and the engine cover. Now the exhausts appear to point inboard of the rear wing endplate. It’s not clear if this is an aerodynamic decision or a request for a less obviously aerodynamic solution from the FIA. Should the exhaust outlet stay in this position the sidepod and the chimney-fairings will need to be altered to optimise the downwashed airflow around the tail pipes.

Rear suspension
Almost unspoken of amidst the talk of the front pullrod set up, Ferrari also switched their rear suspension on its head and gone for pullrod on the rear of the F2012. Last year we saw the Ferrari had a very complex setup around the rear suspension rockers and placing this hardware lower down around the clutch and engine drive shaft, will be a tough task package.


Mounted to the revised gearbox, the rear top wishbone has been repositioned this year. It appears to be nearly horizontal; this places it in line with the beam wing, so the wishbone can act as a flow conditioner ahead of the wing. Even if the new gearbox is not as low as the Williams, the wishbone needs to mount to a vertical extension above the gearbox. This wishbone mounting hard point also forms the mounting for the beam wing. At first this appears to be a duct, but is just the thick swan-neck mounting similar to that used by Marussia for the past two years.

Diffuserrear impact structure
Within the bodywork rules, there is not a lot of scope for a very different diffuser. So Ferrari have now added a full width flap around the diffuser on the new car.
Unusually Ferrari have not fully exposed the underside of the beam wing above the rear crash structure. Looking at the crash structure itself its clear it is shallow enough to allow this. Instead the crash structure has additional bodywork above and below it, which merges it with the beam wing.

Gearbox
As already mentioned the gearbox is a new design. The hybrid carbon and titanium case now has to mount a very different rear suspension system, with the switch to pull rod springdamper operation and the raised upper wishbone.
Last year Ferrari were notable for having a single selector drum for their seamless shift set up. Most teams use two selectors; each one operating alternate gears, so that the phasing from one gear engaging and the other disengaging can be adjusted. Ferrari with a single selector must be confident that their system can always shift with the same aggressive phasing, without the option to go for a longer overlap.

KERS
Ferrari develop their KERS with Marelli, the system retains the same layout as in 2011 with the MGU mounted to the front of the engine and the Batteries placed under the fuel tank. The power electronics reside in the right hand sidepod.

Engine
With the engine freeze, not much can be said of the engine. Ferrari have usefully provided a high resolution image of the 056 engine, complete with integral oil tank, but lacking the KERS MGU.