Ferrari F150 – final pre-season update analysis

For the final test at Barcelona, Ferrari brought the long awaited revisions to the F150 (although the cars name has frequently changed, I’ll continue to use this title). This consisted of a revised wings, new sidepods and new exhausts. It was Ferraris assertion at its launch that the car would have evolved aero and specifically different exhausts before the first race. So despite some people suggesting the changes are copying their rivals, it’s more likely that different teams have converged on the same ideas.

The front wing pylons have been lengthened to form turning vanes

At the front the main changes are to the front wing and its supporting pylons. These pylons have been extended in a similar manner to Renaults ideas from 2009-2010. Since 2009 the rules on vanes and bargeboards around the front of the car have been severely restricted. The rules mandate a limit on the cross sectional area for the front wing mounts, Ferrari have therefore extended their wing mounts, but also narrowed them. Thus meeting the rules and still providing the car with some aero advantage.

3.7.2 Any horizontal section taken through bodywork located forward of a point lying 450mm forward of the front wheel centre line, less than 250mm from the car centre line, and between 125mm and 200mm above the reference plane, may only contain two closed symmetrical sections with a maximum total area of 5000mm2. The thickness of each section may not exceed 25mm when measured perpendicular to the car centre line.

A shapelier endplate has been added to the cascade

Details of the front wing have also changed, in particular the endplates, these now feature a more sculpted vane on the footplate. As well as the endplate fro the main front wing, the inner endplate for the small cascade mounted to it is also now shapelier. The small endplate now having a distinctly flared shape, aimed at redirecting flow inside the front wing.

New sidepod inlets and a blown diffuser are the main changes to the F150

Along the middle section of car, Ferrari have produced a new sidepod, initially similar to the launch specification. But the main radiator inlet is now reshaped, being much more of a “U” shape and smaller with it. The sidepod inlet retains the distinctive protruding upper lip. I was told by Nick Tombasis that this was an aero feature and not a structural one (i.e. side impact crash protection). Curiously this lip features a removable panel to allow for cooling. Being so far forward of the radiators its hard to understand how heated radiator flow could be ducted into the small exit, or perhaps some electronics of KERS components are sited within this hollow section.

Further back along the sidepods, the new exhaust system is routed along the floor and into an open section of floor in the outboard 5cm section of diffuser. This is the same solution as Red Bull has come up with, as already explained this was an obvious area in the 2011 rules for exploitation, as I even proposed this location in my pre-season trends and solutions article. Ferrari route the flattened exhaust inside heat shielding along the floor. The blowing effect of the exhaust passes under the floor for a more effective method of blowing the diffuser. Ferrari wanted to produce the exhaust in glass ceramic composite (such as Pyrosic), but this request was denied by Charlie whiting who clarified the exhaust must be made of materials on the permitted materials list. Such composites, while allowed to be used in some exceptions, are not allowed to be the actual material of the exhaust pipe.

Also the middle of the car gained revised wing mirror pods.  these appear to be split into upper and lower mouldings. Presumably to allow sensors or electronics to be fitted inside the pods during testing or free practice.

Lastly the rear wing has also been modified with a smaller flap. Several teams have switched their rear wing to smaller flaps, at first this is counter intuitive to the exploitation of the Drag reduction system (DRS) also termed the adjustable rear wing. As one would initially deduce that adjusting a larger flap would reduce drag by a greater amount. However, shallower flaps effectively flatten out when the leading edge is moved 50mm from the trailing edge of the main plane (50mm is the maximum slot gap allowed for the DRS). Thus they produce very little load and therefore little drag.



Follow ScarbsF1 on Twitter

Renault R31 – Cooling solution and diffuser performance

Renault are not only unique in their exhaust location, but also their sidepod cooling set up. Its possible that the two solutions are related.

Teams have to find the most efficient way to vent hot air from within the sidepods. This air has to pass through the radiators and coolers, as it passes from the sidepod inlet to the tail of the coke-bottle shape. In order to keep the car as slim as possible for reduced and drag and better airflow to the diffuser and beam wing, teams adopt different cooling outlet solutions to work with the other aero flow structures around the car. In Renaults case the majority of the outlet area is in three places: a tall narrow outlet above the gearbox and two low and wide vents either side of the gearbox. We can see the gearbox oil cooler within the upper outlet, so some of its volume is used for venting this heat. Reducing its ability to vent air from the sidepods.

Renault appear to have chosen the two lowwide outlets in order to boost airflow to the beam wing. The compromise in doing this, is the airflow over the diffuser. Airflow over diffusers might be considered as unimportant, as its the flow underneath creates the low pressure and hence downforce. But with a restricted diffuser height , the use of directing high energy airflow over the top of the diffuser and its trailing edge gurneys, helps the airflow beneath. Effectively making the diffuser act like its larger than it is. With other teams, they use the exhaust gasses or very narrow sidepods to direct as much high energy flow as possible over the diffuser. In Renaults case, the airflow running along the floor does not flow directly over the top surface of the diffuser, as these wide vents are in the way. Some people have suggested the teams are directing the heated airflow from within the sidepods out of these vents and over the diffuser for greater aerodynamic effect. However the reality is different, the air coming out of these vents will be of low energy, having passed through the various cooler matrices. Thus its effect in aiding the diffuser is much reduced.

So why have Renault thrown away some aero gains in this area? Probably because of the exhaust solution, As the flow under the diffuser is accelerated by the exhaust gasses passing under the floor, the diffuser does not need the effect of airflow blowing over the top. Thus they moved to the sidepod outlets to this area and played better airflow over the beam wing.

So far no other team have gone for low wide cooling outlets, but equally contrary to the rumour mils no teams has adopted front exit exhausts either. It will be interesting if any team follows Renaults solution in either of these areas.

Virgin MVR-02 – Exhaust Positioning

As the round of 2011 car launches nears it end, Virgin were the next team to unveil their new car today. Outwardly the MVR-02 is a simple evolution of the VR01, with every detail improved upon and developments that weren’t readied for last year have been applied (namely the EBD). In order to improve from last years reliability problems the cars hydraulic system has been subject to a lot of development and simulation. However this years must-have aid, KERS, is absent from the car.
One detail of note on the car was the exhaust system. Already the buzz word at every launch, the exhaust mates the simpler diffuser to help produce downforce. In Virgins case they have extended the exhausts to blow over the diffuser. Nick Wirth did confirm a Renault style front exit was simulated, but the more conventional approach has been adopted on the launch car at least.

Slim tapered sidepods allow the low-line exhaust the leave at the exit of the coke bottle shape and extend into the boat-tail formed by the underbody step. This is similar to Saubers idea, but instead Virgins exhausts diverge and blow over the mid part of the diffuser. To aid their airflow, fairings have been added the top of the diffuser; these direct the airflow onto a specific region of the diffuser, just above the inner pair of fences. These fences sit 50cm apart and thus can reach down to the reference plane, some 5cm below the floor of the sidepods. Blowing above these fences would pull air from the underfloor and also from along the underbodies step.

However the other design aspects of the MVR-02 suggest the exhaust outlets might be shifted once the car runs. Firstly the car has a well-shaped and detailed starter hole and secondly the inner face of the wings endplates are coated with heat shielding. Neither of these areas would directly benefit from the current exhaust positioning. So either Virgin will move the inlets inwards to blow partly through the starter hole or move the exits outwards to blow along side the wing endplates. As with most teams the exhaust positions will change and may even form a circuit specific set up, some exhaust exits being used for high downforce tracks and other for lower drag tracks.

Ferrari F150 – Starter Motor Hole – Blown Diffuser

Picture co F1Fanatic.co.uk

Ferrari are amongst many teams that have placed their exhausts down low close the cars centreline. In doing this they are passing some of the exhaust gas through the starter motor hole in the diffuser to create more downforce. This solution was likely given the cars exhaust and diffuser layout, but was proven when Felipe Massa’s fire on the third day of testing showed the flames passing not only over, but also through diffuser via the starter hole. Given the rule changes this year, this solution is surprisingly legal.

Teams were using this legal opening in the diffuser last year for aiding their double diffusers. Using the opening as an extra slot to make the diffuser more aggressive, just as rear wings use more slots to allow them more angle-of-attack. Mid season in 2010 the FIA issued a clarification to reduce the size of the slot. This formally made it into the technical regulations for 2011 as article 3.12.7.

3.12.7 An aperture for the purpose of allowing access for the device referred to in Article 5.16 is permitted in this surface. However, no such aperture may have an area greater than 3500mm2 when projected onto the surface itself and no point on the aperture may be more than 100mm from any other point on the aperture.

It doesn’t state or prohibit what else the aperture can be used for, just its maximum surface area and width can be. A rectangular slot would be 10cm wide and 3.5 cm tall, a simple round hole would be a 66mm in diameter.

As the FIA moved to prevent double diffuser, the loophole allowing opening the floor was also closed to the kind of open fronted diffuser as used by Red bull and latterly many of the top teams. With this change in the rules teams are limited in how they can blow the exhaust into the diffuser. Aside from Red Bulls exploitation of the outer 5cm of floor, the only other option is to blow some of the gas through the starter motor hole.
By pointing the exhausts along the sides of the gearbox the fast moving gas flow will pass over the top of the diffuser, when it hits the trailing edge and gurney flap it will help draw more flow underneath the diffuser.

Happy New Year – RedBull RB6 Illustration (Wallpaper)

I’ve been drawing this big detail – big scale illustration of the RB6 as a prelude to a prediction of the 2011 car designs.  So I’d thought I’d post the 2010 RB6 version up as a wallpaper in mono at 1280 resolution.  I’ll do larger sizes on request with or without logos (mail me).

Have a great New Year and thanks for supporting me in my first year Blogging and Tweeting.  Next year will be my tenth covering the technicalities of the sport, so I’ve got some new ideas up my sleeve.

Scarbs…

and without Logos…..

Exhaust Blown Diffusers: Pics from the past

In my previous articles on the subject, I’ve explained the Renault Re40 was the first F1 car to blow the diffuser(1983 first year of flat bottoms).  I got these pictures today and felt it was worth sharing them along with some insight from the man who brought the idea into F1, Jean Claude Migeot.

 This is what Jean Claude Migeot told me about the development

Exhaust blowing was on my menu of aero development during the first year of the flat bottom era (1983) as one possibility to recover some downforce. I was in Renault at the time in charge of aero and, after some checks on the engine bench as we were terrified to face another lag time (!) between throttle movement and downforce creation, I was given the green light to experiment in the tunnel. Exhaust blowing to create a fluid skirt on the side of the car (also tested early 1983) did not worked but blowing the rear diffuser was quite powerful (I remember something like 50 kg on the rear axle at full throttle whatever the speed). 

It was introduced at MonteCarlo in 1983 on the RE 40 and stay on it most of the season. It was kept on RE50 the year after (ask Derek Warwick!) and I introduced it also on the F1/86 (Canada 1986) when I worked for Ferrari later.

I remember well that in 1983 we were immediately protested by Brabham and Gordon Murray (on the basis of the exhaust blowing being a movable aero device) but Renault managed to win that case. A pity they did not return the favor to Brabham at the end of the season!!!

Diffuser blowing is specially good for traction out of slow corners but it has its downsides too. It increases balance sensitivity to throttle position which may create problems on high speed corners. Good and bad sides are quite depending on the driving style too: some drivers can take advantage of it more than others. The gas momentum available in the exhaust today is anyway much reduced compared to the turbo era (about 50%).

The Renault Re50 from 1984 split the 1.5l V6 twin turbo exhausts into two, plus the wastegate pipes, to create six outlets in the diffuser

 

From beneath you can see how the exhausts extend inside the diffuser Copyright: JC Migeot

The Benetton B196 blew the pair of exhausts from the Renault V10 into the centre of the diffuser

Octobers Technical Updates

I’ll compress this months work into one post for simplicity. For updates on F1 technology have a look at the following outlets: Automoto365.com and Motorsport Magazine.

Automoto365.com – Korea & Japan

This is my major outlet, with my images and writing on race-by-race developments

Japanese GP http://bit.ly/AM365_Japan

Red Bull – Rear wing, beam wing and front wing endplates

McLaren – New F-duct

Renault – Slotted footplate

Williams – Slotted beam wing

Sauber – New diffuser

Force India – New diffuser

http://f1.automoto365.com/news/controller.php?lang=en&theme=default&month=10&seasonid=21&nextMode=ExclusiveNewsForm&news_id=42674

Korean GP http://bit.ly/AM365_korea

Red Bull – New front brake ducts

McLaren – Slotted front wing endplate

Ferrari – Ridged splitter

http://f1.automoto365.com/news/controller.php?lang=en&theme=default&month=10&seasonid=21&nextMode=ExclusiveNewsForm&news_id=42861

Motorsport Magazine – Composite Monocoques

I’ve illustrated this article on composite monocoques

http://www.motorsportmagazine.co.uk/2010/10/25/latest-issue-%E2%80%93-december-2010/

Follow ScarbsF1 on Twitter

Ferrari: Open Fronted Blown Diffuser

The opening in the diffuser (yellow) is blown by the exhausts gasses (red)

On Thursday at Interlagos the F10 was seen with a new diffuser set up, as well as an F-duct with the main plane blown rather than the flap. Ferrari have followed other teams and created an open fronted diffuser.

Ferrari first followed Red Bulls idea of an Exhaust Blown Diffuser (EBD) at Round09 in Valencia. but Ferrari chose to blow the exhaust over the top of the diffuser. Where as Red Bull had created an opening into the diffuser, so that the exhaust blows both over and under it. At Silverstone Red Bull opened the diffuser up in two more places each side.

Closed diffuser: the exhaust gas (red) blows over the top of the diffuser (yellow)

Having an open front to the diffuser and directing exhaust flow into it, speeds up the airflow through the diffuser creating more downforce. As with all EBD’s the trade-off is the variation of downforce according to throttle position. To some extent the positioning of the exhaust well upstream from the inlet reduces this effect, as does the engine mappings that retard the ignition and keep the exhaust flow moving even when off the throttle.

Open Diffuser: the exhaust gas (red) enters the slot and passes inside the diffuser (yellow)

Since Mid season both Williams and Mercedes have created open fronted diffusers. In Mercedes case the 800c heat from the exhaust created problems with the diffuser rigidity. Detail design heat shields and improved materials, such as ceramic composites (i.e. Pyrosil) have allowed the exhaust flow to pass directly over the diffuser surface without thermal problems.

Ferrari’s late introduction of the open fronted diffuser and revised F-duct is at odds with statements from the team back in Singapore that the cars development had finished to focus on 2011. Either Ferrari have reignited their development programme as their championship fortunes have reversed with wins in the late season races. Or perhaps the comments meant that the development of the parts had finished, i.e. the design phase was over, but the manufacturing and testing were still in progress.

Clearly these parts do not come from any 2011 programme as the draft rules will ban openings in the diffuser. Although these rules are aimed at eradicating the double diffuser, the wording prevents 50mm openings in the outer portion of the floor (where the flat floor meets the diffuser). Thus open fronted diffuser are effectively banned as routing exhausts that far outboard are impractical. In 2011 downforce can still gained by having the exhaust blowing over the top towards gurney flap to speed flow the diffuser. Equally the f-duct is banned in 2011 replaced by a driver adjustable rear wing.

Septembers Technical updates

I’ll compress this months work into one post for simplicity. For updates on F1 technology have a look at the following outlets: Automoto365.com, Motorsport Magazine and Race Engine Technology magazine.

Automoto365.com – Singapore Tech Desk
All the technical devleopments from singapores night race.
- McLarens front wing and nose cone (thanks to bosyber comments on this blog)
- Red Bulls updates
- Mercedes Bargeboards
- Williams Frotn wing
- plus more from Renault and Toro Rosso

http://f1.automoto365.com/news/controller.php?lang=en&theme=default&month=10&seasonid=21&nextMode=ExclusiveNewsForm&news_id=42469

Motorsport Magazine – F1′s Aero Tricks

I’ve illustrated this article on this years must have developments: F-ducts, Exhaust Blown Diffusers and deflecting splitters.

http://www.motorsportmagazine.co.uk/2010/09/30/latest-issue-%E2%80%93-november-2010/

Race Engine Technology


What lies inside a contemporary Formula One engine? Toyota have given Race Engine Technology full access to their current RXV-08 F1 engine. This issue contains the most detailed technical article ever published on a current F1 engine. A 16 page article covering all aspects of the Toyota Formula One engine in a level of detail you will have never experienced before. RET have been given unprecedented access to the engine with the full co-operation of the entire technical team.

http://www.highpowermedia.com/mall/productpage.cfm/RET/2050/352560

F1 Tech in ‘Race Engine Technology’ Magazine

This months ‘Race Engine Technology’ magazine has some interesting stuff for F1 Tech followers. There’s an interview with Mario Ilien, who explains the work he did with Mercedes-Ilmor including; Hydraulic KERS, a rotary valved V10 (+20k RPM & 78Kg) and of course Berylium for Pistons & Liners.
In the Report from the F1 British GP, the Editor interviews Adrian Newey, Also Costa, Sam Michael and James Allison. Covering several topics; the effect of engine powerdrivabilityconsumption, as well as gearbox design influence on aero, with Newey commenting the Pull Rod was a carry over from 09 & not a requisite for his RB6 design. While Ferrari confirmed their enginegearbox assembly is inclined at over 3-degrees, the first time I’ve seen a reliable quote confirming this fact. It was added that Sauber take this set up for their C29, while Toro Rosso have their own gearbox so have a horizontal drivetrain.
Lastly is a small section on how Sauber pioneered current gearbox design with a longitudinal gearbox, with the gears ahead of the final drive and contained within an aluminum case. It surprised me that Harvey Postlethwaite was involved in this, is there anything that man didn’t do in F1?

Not generally available in the shops and not cheap, but well worth a one-off purchase or subscription.

http://www.highpowermedia.com/mall/productpage.cfm/RET/2049/348121

RACE ENGINE TECHNOLOGY 048 AUGUST 2010

Intro: THE EDITOR
Racing powertrain technology is on the verge of a revolution; Ian Bamsey says this issue gives some hints as to what to look for

Upfront: MARIO ILLIEN ON FUTURE TECHNOLOGY
Ian Bamsey talks to Mario Illien about his pioneering work in Formula One during the V10 era and the future of race technology

Grid: IN THE NEWS
Peugeot’s con rod dramas; HPD’s new LM P2 V6 turbo; Le Mans’ Hybrid u-turn; John Medlen’s new role at DSR and much more

Dossier: PORSCHE 911 GT3 R HYBRID POWERTRAIN TECHNOLOGY
Ian Bamsey investigates how flywheel-based storage of recovered kinetic energy has been pioneered in professional racing

Race Report: BRITISH GRAND PRIX
Despite the ongoing engine freeze, Ian Bamsey discovers some significant powertrain developments at the British Grand Prix

Focus: CAMSHAFTS
Wayne Ward discusses the options available for the design, materials and manufacturing methods for race camshafts

Insight: RACE ENGINE INSTALLATION
Le Mans-winning designer Peter Elleray on the relationship between engine and chassis design, highlighting where their needs conflict

Focus: THE GEARBOX
John Coxon explains key points in designing and building a motorsports transmission – from the gear teeth to choice of differential

Race Report: LE MANS PROTOTYPES
Ian Bamsey gives a rundown of the various engine strategies deployed by this year’s Le Mans Prototype competitors

PS: SAUBER C12 TRANSMISSION
How in 1993 Sauber’s first Formula One car prompted a major shift in transmission technology

To view a sample article from this issue please click here

Price £12.50