Mercedes: Innovative Linked Rear Suspension

As we get towards the end of the season we often see teams start to get relaxed with the usual secrecy in the pitlane. This weekend in Korea was no different with several technical details being bared to the cameras for the first time.
In particular was the first picture I’ve seen of the Mercedes rear suspension, http://www.f1talks.pl/?p=11598&pid=6274  (Credit to F1Talks.pl and SuttonImages.com for the picture)
The surprise is that Mercedes appear to have adopted a hydraulic solution for managing rear roll andor heave stiffness. Nothing is new in F1, this solution closely matches the aims of the 1995 Tyrrell Hydrolink system, which I hope to cover in detail in a future blog post. Indeed this is not even new in current F1, as several other teams already run similar and perhaps even more developed systems. But this is the first evidence I’ve had of teams interconnecting the suspension with hydraulics.
I spoke to renowned race car designer and suspension expert Andy Thorby about the use of just such a system, “I think most or all the teams are using linked hydraulic actuators on the corners.” adding “they allow you to tune the attitude change of the car under aero load, independently of corner spring rates” by altering both heave and roll stiffness.

Background
Mercedes were one of the many teams to switch to pull rod suspension for 2011, to gain the aero benefits and a lower CofG. With space at a premium at the back of an F1 car, compromises in packaging the various suspension elements need to be made. At its launch it was clear the Mercedes pull rod arrangement placed the rocker quite rearward, in comparison to other pull rod arrangements which place the rocker towards the front of the gear case. The conventional forward rocker placement, puts the heave spring and antiroll in the space at the front of the gear case, packaged around the clutch.
In Mercedes case the rocker is packaged the other side of the gear cluster, just under the gearboxes cross shaft. This leaves little room for the antiroll bar and heave spring. It does however place the rocker and torsion bars very low for the benefit of packaging, aero and CofG. Albeit these are small benefits, perhaps Mercedes choice of a short wheel base did not leave space for the suspension to be packaged around the clutch, as the gearbox length is a critical factor in wheelbase length.
So left with the lack of space to place either a mechanical heave element or a antiroll bar, it appears that Mercedes have opted to create a passive hydraulic system. This is not to be confused with any form of active suspension or the cars high pressure hydraulic systems, this system will be entirely self contained to remain within the rules on suspension design. As the system reacts only to suspension loads, it is clearly legal and there is no question of interpretation in its acceptance by the FIA.

What Mercedes have in place of a conventional anti roll bar and heave spring are hydraulics units (yellow), which probably also act as the dampers. These are connected via fluid lines (blue) to the central valve block and reservoir (red). Springing for the rear wheels is managed by the torsion bars. One end of which is conventionally located within the rocker pivot, the torsion bar then leading forward and connecting to the front of the gear case.
There is still some hardware at the top of the gearbox, which looks like it might be the mounting for an anti roll bar (ARB). But in this set up, its hard to see how the suspension rocker will act on the ARB. So Its not clear if the car started the season with a mechanical system, or whether it was designed purely with this solution in mind.
The teams early season struggle with rear tyre wear, may or may not be attributable to this system. My feeling is that other rear suspension and car layout factors have influenced the tyre problem, to a greater degree than this hydraulic solution. Although in a car that had a difficult pre-season and fundamental design problems. Getting the hydraulic suspension to work as well, may have been just another drain on resources for a team trying to recover its pace.

How it works
A cars individual wheel dampers displace hydraulic fluid as the suspension moves, creating higher pressure in one end of the damper and lower pressure in the other. To act as a damper, valves in the damper control the rate in which the fluid moves between the two chambers to create the damping effect.

In the passive hydraulic unit, the fluid is displaced not from one chamber to another, but via pipes through a valve block and into the opposite hydraulic unit. How the upper and lower chambers are interconnected left to right make the system react differently to inputs from the suspension. These being a resistance to roll or heave.

In a simplified view we can see the system working in two modes, with the fluid lines in ‘Parallel‘, where one units upper chamber connected to the opposite units upper chamber. Or, in ‘Crossover‘, where the upper chamber in one unit is connected to the lower chamber in the opposite unit.
In each mode we can see the effect of the car in roll (tilting from cornering loads) or heave (going down from aero or braking loads).

Parallel

Heave

When the car is in heave, both upper chambers create high pressure. This creates resistance between the two systems wanting to displace their fluid. This has the effect of increasing the cars heave stiffness.

Roll


When the car is rolling, the upper chamber on one side and the lower chamber on the other side create high pressure. As these chambers are now connected to the lower pressure chambers on their opposite side, the fluid displaced with little resistance. This presents no increase in the cars roll stiffness.

Crossover

Heave


When the car is in heave, both upper chambers create high pressure. As these chambers are now cross connected to the lower pressure chambers on their opposite side, the fluid is displaced with little resistance. This presents no increase in the cars heave stiffness.

Roll


When the car is rolling, the upper chamber on one side and the lower chamber on the other side create high pressure. As these chambers are cross connected to the high pressure chambers on their opposite side. This creates resistance between the two systems wanting to displace their fluid. This has the effect of increasing in the cars roll stiffness.

If a team simply want a hydraulic system to create one suspension effect, then they can rig up a basic system based on one of these patterns. However, with a valve system connecting in the centre of the pipes, then a single pair of hydraulic units and would be able to control both heave and roll stiffness. Such a system would not need external pressurisation or any control software to operate the valve block.

Development issues
However these systems are still present handicaps to development. Friction in the valve seals and the valve block, will create heat and variances in the systems response. This heat will be an enemy of the system, as it effect on the volume of fluid in the system, thus the stiffness the system provides to the suspension will alter. As a result the system will need to be a ‘constant volume’ system. Where the volume of fluid is managed depending on its rate of thermal expansion. This is probably part of the function of the small reservoir mounted to the valve block.
Equally important is the ‘installation stiffness’ of the system, that is the flexibility of any components, especially the flexible fluid lines, as this will alter the systems response.
But these and other issues related to hydraulic systems is already well understood by the teams with similar hydraulics being used both for the braking system and the high pressure electro-hydraulic control systems.

One area which presents trouble to the teams is the modelling of these systems. The design and simulation of the hydraulic element is not necessarily covered by conventional suspension and ride simulation software. I asked , Peter Harman, Technical Director of Deltatheta Ltd (http://www.deltatheta.com) about these issues. “I have advised teams on how best to simulate them“ adding “it sounds like it is a common development“. The problem is the hydraulic elements don’t fit in with conventional suspension design software. As Peter explains “Traditionally car companies have used MSC Adams for suspension modelling, and this has been adopted for ride simulation by most F1 teams, however Adams is really just a mechanical tool and doesn’t do hydraulics well“. Thus teams need to alter their approach, needing specialist add-ons and code to augment the already well established suspension development solutions.
Of course the systems will also be physically rig tested in back to back comparisons with their mechanical counterparts on the teams multi-post rigs.

Overcoming these issues with good approach to the detail design work, a hydraulic system should be able to get very close to the response of a Mechanical system. However the potential of the Hydraulic solution does offer some other benefits over purely mechanical systems.

Other possibilities
Once you have the ability to independently tailor the damping and stiffness of the heave and roll functions. The next obvious step is to control the pitch of the car. Pitch is when the car brakes or accelerates, one end of the car moves down and the other moves up. Braking creates a forward pitch, with reduced front ride height and greater rear ride height. Acceleration is the opposite situation.
As we’ve seen for the past few years controlling pitch is critical to maintaining a low front wing ride height, with out sacrificing splitter wear or excessive rear ride height (thus rear downforce).
Linking the hydraulic unitsvalve blocks between both front and rear axles, will allow the same resistance to pitch, as it does to heave on just one axle. This will increase the front heave stiffness, reducing forward pitch and preventing the splitter grounding excessively. This effect under braking could be further augmented with either gravitationally load sensitive valves, altering the displacement of fluid front to rear. Or similarly, a valve directly controlled by brake pressure. The former G-load system already in legal use on the individual wheel dampers and the latter solution a common fitment to motorbikes in the eighties, often termed Anti-Dive.

Summary
With Rake being ever important to the cars aero set up, such linked systems are increasingly being investigated by the teams. Indeed one team has run such a solution since mid 2009 and at least two other teams (one at each end of the grid) ran them last year.

Book Review: Haynes Red Bull Racing F1 Car

When Red Bull Racing launched their new car for 2011, the event was marked by a very special press pack. The pack was formatted in the style of the well-known Haynes maintenance manuals (PDF). This in itself this was a great book, but almost unnoticed within its pages was the intended publishing of a complete Haynes style workshop manual on the RB6 car.
Now some six months later the Haynes Red Bull Racing F1 Car Owners Workshop Manual (RB6 2010) has been published. As its rare a Technical F1 book is published, not least one with insight into such a current car, I’ve decided to review the book in detail.

Summary
At 180 pages long the book has enough space to cover quite a wide range of topics and it does so. Starting with a background to the team, moving on to the cars technology, to overviews of its design and operation. With its familiar graphical style and hardback format it certainly gives the feel of a proper workshop manual. However this is somewhat skin deep and the pages within, soon revert to a more typical book on F1, although some flashes of the Haynes style do remain.

Steve Rendle is credited as the writer of the book and Red Bull Racing themselves have allowed close up photography of the car and its parts, as well as providing a lot of CAD images.
But clearly a lot of editing has been carried out by Red Bull Racing and the book falls short of its presentation as a manual for the RB6. Despite its confusing title, the book is probably better described as a summary of contemporary F1 technology from the past 3 years.
As the last in depth technical F1 book was the heavy weight title from Peter Wright showcasing Ferraris F1 technology from 2000, this remains a useful source of recent F1 technology.
This places the books target audience, somewhere between the complete novice and those already of a more technical mindset.

Anatomy

With forewords by Christian Horner and Adrian Newey, the opening 21 pages are a background to the team and detail of the 2010 season that brought RBR the championships. Then starts the core 100 page chapter on the cars anatomy, which opens with a pseudo cutaway of the car showing a CAD rendering of its internals.

Firstly the monocoques design and manufacture is covered, with images of the tubs moulds being laid up and CAD images of the RB4 (2008) chassis and its fuel tank location. Although little is made of the fuel tank design.
Moving on to aerodynamics, the text takes a simplistic approach to explaining aero, but there is an interesting illustration of the cars downforce distribution front to rear. This does highlight the downforce created by the wings and diffuser, but also the kick in downforce at the leading edge of the floor, but this is not adequately explained in the text. Mention is made of the front wing and the flexing that RBR deny, this is explained with a simple illustration showing the deflection test. The driver adjustable front flap, which was legal during 2009-2010 seasons, is explained, in particular that the wing was hydraulically actuated. When I understood that in 2009, only Toyota used a hydraulic mechanism over the electric motor system used by all other teams. In trying to explain the nose cone, the text and an illustration show a high nose and low nose configuration, but does not remark why one is beneficial over the other.

This section also covers very brief summaries of bargeboards, sidepods and the floor. Some nice close up photos of these parts included, but again with little explanation. An illustration at this point highlights the other FIA deflection test altered in 2010, which was aimed at Red Bulls alleged flexing T-Tray splitter. In this section the text cites Ferraris sprung floor of 2007, but not the allegation that RBR’s was flexing in 2010. A further simple graphic illustrates the venturi effect of the floor and diffuser, and then the text goes into simple explanations of both the double diffuser and the exhaust blown diffuser.
Having been one of the technical innovations of 2010 and since banned, the book is able to cover the F-Duct is some detail. A complete CAD render of the ducting is provided on page 53; this shows an additional inlet to the drivers control duct that was never visible on the car. This extra duct served the same function as the nose mounted scoop on the McLaren that introduced the F-Duct to F1.
Thus with aerodynamics covered in some 23 pages, the text moves onto suspension and the expectation of detail on the RB5-6′s trademark pullrod rear suspension. After a summary of the purpose of an F1 cars suspension, Pages 58-59 have some fantastic CAD renderings of front suspension, uprights and hub layouts. However the rear suspension rendering stops short at the pull rod and no rocker, spring, damper layouts are detailed. Hardly a secret item, so lacking this detail is let down for a book announced as an RB6 workshop manual. A lesser point, but also highlighting the censorship of some fairly key technical designs, was the lack of any reference to Inerters (Inertia or J-Dampers), The suspension rendering simply pointing to the inerter and calls it the ‘heave spring’, while naming the actual heave spring damper as simply another ‘damper’. Inerters have been in F1 since 2006, predating Renault’s mass damper. Their design and purpose is well documented and shouldn’t be considered something that needs censoring. It’s also this section that fails to showcase the RB5-6 gearbox case. Instead using a pushrod suspended RB4 (2008) gearbox, albeit one made in carbon fibre.
The steering column, rack and track rods are similarly illustrated with CAD images. This usefully shows the articulation in the column, but little of the hydraulic power assistance mechanism. Page 67 starts the section on brakes, again fantastic CAD images supply the visual reference for the upright, brake caliper and brake duct design. As well as a schematic of the brake pedal, master cylinder and brake line layout of the entire car. A nod to more typical Haynes manuals shows the removal of the brake caliper and measure of the Carbon discpad. A further CAD image shows the brake bias arrangement with both the pivot at the pedal and the ratchet control in the cockpit for the driver to alter bias.
Although not a RBR component the Renault engine is covered in the next Chapter. An overview of the complex engine rules regarding the design and the specification freeze kicks off this section and cites the tolerances and compression ratio for a typical F1 engine. Pneumatic valves, for along time an F1-only technology are explained, but even I failed to understand the schematic illustrating these on page 77. Also covered in the engine section is some more detail on the fuel, oil and cooling systems. With useful specifics, like capacity of the oil system at 4 litres and water coolant at 8 litres. Again some nice CAD images illustrate the radiators within the sidepod. Many sections have a yellow highlighted feature column; this sections feature is on the engine start up procedure, one of the mundane, but rarely talked about processes around an F1 car (other features are on the shark fin and brake wear). As KERS wasn’t used up until 2011, this topic is skipped through with a just a short explanation of the system.

Moving rearward to the transmission system, the old RB4 gearbox makes a reappearance. Again this disappoints, as some quite common F1 technology does not get covered. Page88 shows some close up photos of a gear cluster, but this is not a seamless shift gearbox. In fact seamless shift isn’t mentioned, even though it made its RBR debut in 2008, the year of the gearbox showcased in the book. I know many will highlight that this might be a secret technology. But most teams sport a dual gear selector barrel, each selector looking after alternate gears to provide the rapid shift required to be competitive in F1. So I think this is another technology that could be explained but hasn’t been.
Tyres, Wheel and Wheel nuts get a short section, before the text moves onto electronics. A large part of the electronic system on a current F1 car is now standardised by the Single ECU (SECU) and the peripherals that are designed to support it. So this section is unusually detailed in pointing out the hardware and where it’s fitted to the car. From the tiny battery to the critical SECU itself. Other electronic systems are briefly described from the Radio, drivers drink system to the rain light.
Of critical importance to the modern F1 car are hydraulics, which are detailed on p105. As with the other sections, CAD images and some photos of the items themselves explain the hydraulic system, although there isn’t a complete overview of how it all fits together.
Rounding off the anatomy chapter is the section of safety items and the cockpit. The steering wheel and pedals are well illustrated with CAD drawings and keys to the buttons on the wheel itself and on the switch panel inside the cockpit.

While I have pointed that the hardware shown in the anatomy chapter isn’t necessarily of the RB6, what is on show is obviously genuine and recent RBR. So for those not so familiar with the cars constituent parts, there isn’t a better source of this available in print today. Even web resources will fail to have such a comprehensive breakdown of an F1 car.

The Designers view

Moving away from the Haynes format of a workshop manual, the book then moves into a chapter on the cars design, with comments from Adrian Newey. It details the Design Team structure and some of the key individuals are listed. The text then covers the key design parameters; centre of the gravity and the centre of pressure (downforce). Plus the design solutions used to understand them; CFD, Wind Tunnels and other simulation techniques. Each being briefly covered, before similar short sections on testing and development close this chapter.
Although the text makes reference to creating ‘the package’, something Newey excels at. This section doesn’t provide the insight into the overall design philosophy, which one might have hoped for.

The Race Engineers view
Where as the Designers view chapter was limited, the race Engineers section was a little more insightful into the rarely talked about discipline of getting the car to perform on track. The process of setting up the car is covered; from the understanding of the data, to the set up variables that the race engineer can tune; suspension, aero, ballast, gearing brakes and even engine. Usefully the grand prix weekend is broken down onto the key events from scrutineering, to running the car and the post race debrief. Feature columns in this chapter include; Vettels pre race preparation and the countdown to the race start.

The Drivers view
Ending the book is an interview style chapter on the driver’s time in the car, mainly the driver’s perspective from within the cockpit when driving the car on the limit and the mindset for a qualifying lap. A simplistic telemetry trace of a lap around Silverstone is illustrated, although there is little written to explain the traces (brakes, speed and gear), this is accompanied by Mark Webbers breakdown of a lap around the new Silverstone circuit.

In conclusion
When I first got this book, I was constantly asked if it was worth the purchase or if I’d recommend it. If my review is critical at points, it’s mainly because some technology that could have been covered wasn’t. Or, that the content falls short of the books title suggesting it was a manual for the RB6.
Those points aside, I have learnt things from this book. Like details of the F-duct system, the Front Flap Adjuster and a wealth of smaller facts. There isn’t a better book on the contemporary F1 car. In particular the CAD drawings and close-up photos, just simply aren’t in the public domain. From the pictures we got over the race weekends, we never get to see half the hardware and design work that’s pictured in this book. So I’ll keep this book on hand for reference for several seasons to come.

Overall I’d recommend this book to anyone with a technical interest in F1.

Many thanks to Haynes Publishing who have allowed me to use their Images and PDFs to illustrate this article

This book is available from Haynes

Red Bull – Pull rod suspension detailed

Via Motorsport Magazin

From these images we can finally see some detail of the Red bull gearbox. Firstly the construction is carbon Fibre, which the team switched to mid way through 2009, in order to save weight over the old aluminium case.

Top wishbone location - via Motorsport Magazin

Then we can note the geometry of the wishbones, Red Bull followed high mounted wishbones since the RB5, the rear top wishbone (RTWB) being very high and near horizontal, being mounted to the ridge along to the top of the gearbox.

Differential - via Motorsport Magazin

Equally Red Bull have gone for a low differential, but the total effect is a very tall and bulky gearbox, albeit one that fits into the natural space created as the car tapers to the rear. But compared to Williams gearbox its clear to see where better airflow can be created at the tail of the car.

Pull Rod - via Motorsport Magazin

It’s rare to find pictures of the Red bull pull rod suspension. The low mounted mechanical parts normally covered by body panels and heat shielding. But here we can quite clearly see the pull rod leading down to the rocker. The pull rod is split to allow easy ride height changes by adding shims into the split and also allows the pull rod to be permanently mounted to the bearings on the rocker. When the rear wishbones are removed this lower part of the pullrod will remain with the gearbox. In turn the rocker operates the compliant elements of the rear suspension, the springs, dampers and heave elements.

Damper - Via Motorsport Magazin

The damper is clearly visible being mounted alongside the flanks of the gearbox case. The red anodized body and labels making it easy to spot. Note the rocker has a longer lever to operate the damper in comparison to the lever that the pull rod mounts to. This is to increase damper travel compared to wheel travel for greater wheel control.

rocker or Bell Crank - via Motorsport Magazin

Its not clear if the rocker works on a torsion bar t provide the rear springing, its believed Red Bull went away from torsion bars and individual wheel springs in 2009. Instead using the heave spring allied to the antiroll bar for a springless rear set up (read more at http://scarbsf1.wordpress.com/2010/12/03/spring-less-rear-suspension-a-quiet-revolution/). If a torsion bar is used it will need to run near vertically along the axis of the rocker.

Rocker to operate the Heave spring - via Motosport magazin

Not entirely visible is the heave control set up, this will consist of a Heave spring, damper andor bump rubbers, plus an inerter (not strictly for heave control but mounted in the same location). These run across the front of the gearbox, being mounted just above the clutch. We can see the splined end of the anti roll bar; the bar will have levers reaching forward to drop links that will provide the rear roll control.

Antiroll Bar location - via Motorsport Magazin

More on Pull Rods http://scarbsf1.wordpress.com/2010/10/10/red-bull-pull-rod-suspension-what-is-looks-like-how-it-benefits-aerodynamics/

Follow ScarbsF1 on Twitter